Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Commutative Convolution of Functions and Distributions

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The commutative convolution f * g of two distributions f and g in D' is defined as the limit of the sequence {(f tau(n)) * (g tau(n))}, provided the limit exists, where {tau(n)} is a certain sequence of functions tn in D converging to 1. It is proved that |x|(lambda) * (sgn x|x|(-lambda-1)) = pi[cot (pi lambda) - cosec(pi lambda)] sgn x|x|(0), for lambda not equal 0, +/- 1, +/- 2, ... , where B denotes the Beta function.

Description

Tas, Kenan/0000-0001-8173-453X

Keywords

Distribution, Dirac Delta Function, Convolution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Fisher, B., Taş, K. (2007). Commutative convolution of functions and distributions. Integral Transforms & Special Functions, 18(10), 689-697. http://dx.doi.org/10.1080/10652460600935965

WoS Q

Q2

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Volume

18

Issue

10

Start Page

689

End Page

697
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo