Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations

dc.authorid Khan, Mansoor/0000-0001-5496-1585
dc.authorid Affan, Hira/0000-0001-8495-4351
dc.authorscopusid 15047920200
dc.authorscopusid 7005872966
dc.authorscopusid 24176419000
dc.authorscopusid 57205346393
dc.authorscopusid 33067561900
dc.authorwosid Khan, Mansoor/Aae-4133-2019
dc.authorwosid , Asif/Aam-4071-2021
dc.authorwosid Affan, Hira/Aaa-2582-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Javeed, Shumaila
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Waheed, Asif
dc.contributor.author Khan, Mansoor Shaukat
dc.contributor.author Affan, Hira
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-01-29T12:07:38Z
dc.date.available 2020-01-29T12:07:38Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Javeed, Shumaila; Khan, Mansoor Shaukat] COMSATS Univ Islamabad, Dept Math, Pk Rd, Chak Shahzad Islamabad 45550, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Waheed, Asif] COMSATS Univ Islamabad, Dept Math, Kamra Rd, Attock 43600, Punjab, Pakistan; [Affan, Hira] COMSATS Univ Islamabad, Dept Phys, Pk Rd, Chak Shahzad Islamabad 45550, Pakistan en_US
dc.description Khan, Mansoor/0000-0001-5496-1585; Affan, Hira/0000-0001-8495-4351 en_US
dc.description.abstract The analysis of Homotopy PerturbationMethod (HPM) for the solution of fractional partial differential equations (FPDEs) is presented. A unified convergence theorem is given. In order to validate the theory, the solution of fractional-order Burger-Poisson (FBP) equation is obtained. Furthermore, this work presents the method to find the solution of FPDEs, while the same partial differential equation (PDE) with ordinary derivative i.e., for alpha = 1, is not defined in the given domain. Moreover, HPM is applied to a complicated obstacle boundary value problem (BVP) of fractional order. en_US
dc.description.publishedMonth 1
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Javeed, Shumaila...et al. (2019). "Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations", Mathematics, Vol. 7, No. 1. en_US
dc.identifier.doi 10.3390/math7010040
dc.identifier.issn 2227-7390
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85059608316
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/math7010040
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000459734200040
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 81
dc.subject Burger-Poisson Equation Of Fractional Order en_US
dc.subject Hpm en_US
dc.subject Fractional Derivatives en_US
dc.title Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations tr_TR
dc.title Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 67
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
587.51 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: