Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations
dc.authorid | Khan, Mansoor/0000-0001-5496-1585 | |
dc.authorid | Affan, Hira/0000-0001-8495-4351 | |
dc.authorscopusid | 15047920200 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 24176419000 | |
dc.authorscopusid | 57205346393 | |
dc.authorscopusid | 33067561900 | |
dc.authorwosid | Khan, Mansoor/Aae-4133-2019 | |
dc.authorwosid | , Asif/Aam-4071-2021 | |
dc.authorwosid | Affan, Hira/Aaa-2582-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Javeed, Shumaila | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Waheed, Asif | |
dc.contributor.author | Khan, Mansoor Shaukat | |
dc.contributor.author | Affan, Hira | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-01-29T12:07:38Z | |
dc.date.available | 2020-01-29T12:07:38Z | |
dc.date.issued | 2019 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Javeed, Shumaila; Khan, Mansoor Shaukat] COMSATS Univ Islamabad, Dept Math, Pk Rd, Chak Shahzad Islamabad 45550, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Waheed, Asif] COMSATS Univ Islamabad, Dept Math, Kamra Rd, Attock 43600, Punjab, Pakistan; [Affan, Hira] COMSATS Univ Islamabad, Dept Phys, Pk Rd, Chak Shahzad Islamabad 45550, Pakistan | en_US |
dc.description | Khan, Mansoor/0000-0001-5496-1585; Affan, Hira/0000-0001-8495-4351 | en_US |
dc.description.abstract | The analysis of Homotopy PerturbationMethod (HPM) for the solution of fractional partial differential equations (FPDEs) is presented. A unified convergence theorem is given. In order to validate the theory, the solution of fractional-order Burger-Poisson (FBP) equation is obtained. Furthermore, this work presents the method to find the solution of FPDEs, while the same partial differential equation (PDE) with ordinary derivative i.e., for alpha = 1, is not defined in the given domain. Moreover, HPM is applied to a complicated obstacle boundary value problem (BVP) of fractional order. | en_US |
dc.description.publishedMonth | 1 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Javeed, Shumaila...et al. (2019). "Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations", Mathematics, Vol. 7, No. 1. | en_US |
dc.identifier.doi | 10.3390/math7010040 | |
dc.identifier.issn | 2227-7390 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85059608316 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/math7010040 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000459734200040 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 81 | |
dc.subject | Burger-Poisson Equation Of Fractional Order | en_US |
dc.subject | Hpm | en_US |
dc.subject | Fractional Derivatives | en_US |
dc.title | Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations | tr_TR |
dc.title | Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 67 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |