Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer–Katugampola fractional derivative

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this research, we present the stability analysis of a fractional differential equation of a generalized Liouville-Caputo-type (Katugampola) via the Hilfer fractional derivative with a nonlocal integral boundary condition. Besides, we derive the relation between the proposed problem and the Volterra integral equation. Using the concepts of Banach and Krasnoselskii's fixed point theorems, we investigate the existence and uniqueness of solutions to the proposed problem. Finally, we present two examples to clarify the abstract result.

Description

Kumam, Poom/0000-0002-5463-4581

Keywords

Hilfer Fractional Derivative, Stability, Volterra Integral Equation, Nonlocal Integral Condition

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ahmed, Idris...et al. (2020). "Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer–Katugampola fractional derivative", Advances in Difference Equations, Vol. 2020, No.1.

WoS Q

Q1

Scopus Q

N/A

Source

Volume

2020

Issue

1

Start Page

End Page