Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A detailed study on a new (2+1)-dimensional mKdV equation involving the Caputo-Fabrizio time-fractional derivative

dc.authorscopusid 36903183800
dc.authorscopusid 57196518713
dc.authorscopusid 36450796300
dc.authorscopusid 7005872966
dc.authorwosid Hosseini, Kamyar/J-7345-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Mirzazadeh, Mohammad/Y-3202-2019
dc.authorwosid Ilie, Mousa/Aao-4295-2021
dc.contributor.author Hosseini, K.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ilie, M.
dc.contributor.author Mirzazadeh, M.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-12-31T11:29:20Z
dc.date.available 2020-12-31T11:29:20Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Hosseini, K.; Ilie, M.] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran; [Mirzazadeh, M.] Univ Guilan, Fac Technol & Engn, Dept Engn Sci, Rudsar Vajargah 4489163157, Iran; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, R-76900 Magurele 76900, Romania en_US
dc.description.abstract The present article aims to present a comprehensive study on a nonlinear time-fractional model involving the Caputo-Fabrizio (CF) derivative. More explicitly, a new (2+1)-dimensional mKdV (2D-mKdV) equation involving the Caputo-Fabrizio time-fractional derivative is considered and an analytic approximation for it is retrieved through a systematic technique, called the homotopy analysis transform (HAT) method. Furthermore, after proving the Lipschitz condition for the kernel psi (x,y,t;u), the fixed-point theorem is formally utilized to demonstrate the existence and uniqueness of the solution of the new 2D-mKdV equation involving the CF time-fractional derivative. A detailed study finally is carried out to examine the effect of the Caputo-Fabrizio operator on the dynamics of the obtained analytic approximation. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Hosseini, K...et al. (2020). "A detailed study on a new (2+1)-dimensional mKdV equation involving the Caputo-Fabrizio time-fractional derivative", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02789-5
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85087425459
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-020-02789-5
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000552028300001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 12
dc.subject Mml:Mo Stretchy="False"(Mml:Mo Mml:Mn2Mml:Mn Mml:Mo+Mml:Mo Mml:Mn 1Mml:Mn Mml:Mo Stretchy="False")Mml:Mo-Dimensional Mkdv Equation en_US
dc.subject Caputo-Fabrizio Time-Fractional Derivative en_US
dc.subject Homotopy Analysis Transform Method en_US
dc.subject Analytic Approximation en_US
dc.subject Fixed-Point Theorem en_US
dc.subject Existence And Uniqueness Of The Solution en_US
dc.title A detailed study on a new (2+1)-dimensional mKdV equation involving the Caputo-Fabrizio time-fractional derivative tr_TR
dc.title A Detailed Study on a New (2+1)-Dimensional Mkdv Equation Involving the Caputo-Fabrizio Time-Fractional Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: