Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Designing a Matrix Collocation Method for Fractional Delay Integro-Differential Equations With Weakly Singular Kernels Based on Vieta-Fibonacci Polynomials

dc.contributor.author Hosseini, Kamyar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Salahshour, Soheil
dc.contributor.author Park, Choonkil
dc.contributor.author Sadri, Khadijeh
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-03-05T12:59:34Z
dc.date.accessioned 2025-09-18T14:09:11Z
dc.date.available 2024-03-05T12:59:34Z
dc.date.available 2025-09-18T14:09:11Z
dc.date.issued 2022
dc.description Sadri Khatouni, Khadijeh/0000-0001-6083-9527; Park, Choonkil/0000-0001-6329-8228; Salahshour, Soheil/0000-0003-1390-3551 en_US
dc.description.abstract In the present work, the numerical solution of fractional delay integro-differential equations (FDIDEs) with weakly singular kernels is addressed by designing a Vieta-Fibonacci collocation method. These equations play immense roles in scientific fields, such as astrophysics, economy, control, biology, and electro-dynamics. The emerged fractional derivative is in the Caputo sense. By resultant operational matrices related to the Vieta-Fibonacci polynomials (VFPs) for the first time accompanied by the collocation method, the problem taken into consideration is converted into a system of algebraic equations, the solving of which leads to an approximate solution to the main problem. The existence and uniqueness of the solution of this category of fractional delay singular integro-differential equations (FDSIDEs) are investigated and proved using Krasnoselskii's fixed-point theorem. A new formula for extracting the VFPs and their derivatives is given, and the orthogonality of the derivatives of VFPs is easily proved via it. An error bound of the residual function is estimated in a Vieta-Fibonacci-weighted Sobolev space, which shows that by properly choosing the number of terms of the series solution, the approximation error tends to zero. Ultimately, the designed algorithm is examined on four FDIDEs, whose results display the simple implementation and accuracy of the proposed scheme, compared to ones obtained from previous methods. Furthermore, the orthogonality of the VFPs leads to having sparse operational matrices, which makes the execution of the presented method easy. en_US
dc.description.publishedMonth 1
dc.identifier.citation Sadri, Khadijeh;...et.al. (2022). "Designing a matrix collocation method for fractional delay integro-differential equations with weakly singular kernels based on vieta–fibonacci polynomials", Fractal and Fractional, Vol.6, No.1. en_US
dc.identifier.doi 10.3390/fractalfract6010002
dc.identifier.issn 2504-3110
dc.identifier.scopus 2-s2.0-85121574090
dc.identifier.uri https://doi.org/10.3390/fractalfract6010002
dc.identifier.uri https://hdl.handle.net/20.500.12416/13308
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Delay Integro-Differential Equation With Weakly Singular Kernel en_US
dc.subject Caputo Derivative Operator en_US
dc.subject Vieta-Fibonacci Polynomials en_US
dc.subject Error Bound en_US
dc.title Designing a Matrix Collocation Method for Fractional Delay Integro-Differential Equations With Weakly Singular Kernels Based on Vieta-Fibonacci Polynomials en_US
dc.title Designing a matrix collocation method for fractional delay integro-differential equations with weakly singular kernels based on vieta–fibonacci polynomials tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sadri Khatouni, Khadijeh/0000-0001-6083-9527
gdc.author.id Park, Choonkil/0000-0001-6329-8228
gdc.author.id Salahshour, Soheil/0000-0003-1390-3551
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 56685323200
gdc.author.scopusid 36903183800
gdc.author.scopusid 7005872966
gdc.author.scopusid 23028598900
gdc.author.scopusid 15051122700
gdc.author.wosid Hosseini, Kamyar/J-7345-2019
gdc.author.wosid Park, Choonkil/F-6998-2017
gdc.author.wosid Sadri, Khadijeh/Jwa-5374-2024
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Salahshour, Soheil/K-4817-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Sadri, Khadijeh] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht 413353516, Iran; [Hosseini, Kamyar] Near East Univ TRNC, Dept Math, Mersin 10, TR-99138 Nicosia, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40447, Taiwan; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34349 Istanbul, Turkey; [Park, Choonkil] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 6 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4200242737
gdc.identifier.wos WOS:000747312800001
gdc.openalex.fwci 0.99953977
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 11
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.wos.citedcount 12
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files