Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analysis and Some Applications of a Regularized Ψ-Hilfer Fractional Derivative

dc.authorid Jajarmi, Amin/0000-0003-2768-840X
dc.authorscopusid 34880044900
dc.authorscopusid 7005872966
dc.authorscopusid 56306064100
dc.authorscopusid 35238377400
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Jajarmi, Amin/O-7701-2019
dc.authorwosid Sajjadi, Samaneh/Aad-3326-2020
dc.authorwosid Nieto, Juan/B-1729-2010
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Sajjadi, Samaneh Sadat
dc.contributor.author Nieto, Juan J.
dc.contributor.other Matematik
dc.date.accessioned 2025-05-11T17:09:47Z
dc.date.available 2025-05-11T17:09:47Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Jajarmi, Amin] Univ Bojnord, Dept Elect Engn, POB 94531-1339, Bojnord, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Sajjadi, Samaneh Sadat] Hakim Sabzevari Univ, Dept Elect & Comp Engn, Sabzevar, Iran; [Nieto, Juan J.] Univ Santiago de Compostela, Inst Matemat, Santiago De Compostela 15782, Spain en_US
dc.description Jajarmi, Amin/0000-0003-2768-840X en_US
dc.description.abstract The main purpose of this research is to present a generalization of Psi-Hilfer fractional derivative, called as regularized Psi-Hilfer, and study some of its basic characteristics. In this direction, we show that the psi-Riemann-Liouville integral is the inverse operation of the presented regularized differentiation by means of the same function psi. In addition, we consider an initial-value problem comprising this generalization and analyze the existence as well as the uniqueness of its solution. To do so, we first present an approximation sequence via a successive substitution approach; then we prove that this sequence converges uniformly to the unique solution of the regularized Psi-Hilfer fractional differential equation (FDE). To solve this FDE, we suggest an efficient numerical scheme and show its accuracy and efficacy via some real-world applications. Simulation results verify the theoretical consequences and show that the regularized Psi-Hilfer fractional mathematical system provides a more accurate model than the other kinds of integer- and fractional-order differential equations. (C) 2022 Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship Agencia Estatal de Investigacion (AEI) of Spain [PID2020-113275GB-I00]; European Community fund FEDER, Spain; Xunta de Galicia [ED431C 2019/02] en_US
dc.description.sponsorship The research work of J.J. Nieto has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain under grant PID2020-113275GB-I00, and cofinanced by the European Community fund FEDER, Spain, as well as by Xunta de Galicia grant ED431C 2019/02 for Competitive Reference Research Groups, Spain (2019-22). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.cam.2022.114476
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-85132587846
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.cam.2022.114476
dc.identifier.uri https://hdl.handle.net/20.500.12416/9680
dc.identifier.volume 415 en_US
dc.identifier.wos WOS:000886910000011
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 99
dc.subject Fractional Derivative en_US
dc.subject Regularized Psi-Hilfer en_US
dc.subject Existence And Uniqueness en_US
dc.subject Numerical Method en_US
dc.title Analysis and Some Applications of a Regularized Ψ-Hilfer Fractional Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 86
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files