Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the non-commutative neutrix product of the distributions x(+)(lambda) and x(+)(mu)

No Thumbnail Available

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Heidelberg

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Let f and g be distributions and let g(n) = (g * delta(n))(x), where delta(n)(x) is a certain sequence converging to the Dirac delta function. The non-commutative neutrix product f circle g of f and g is defined to be the limit of the sequence {fg(n)}, provided its limit h exists in the sense that [GRAPHICS] for all functions p in D. It is proved that (x(+)(lambda)ln(p)x(+)) circle (x(+)(mu)ln(q)x(+)) = x(+)(lambda+mu)ln(p+q)x(+), (x(-)(lambda)ln(p)x(-)) circle (x(-)mu ln(q)x(-)) = x(-)(lambda+mu)ln(p+q)x(-), for lambda + mu < -1; lambda,mu,lambda+mu not equal -1,-2,... and p,q = 0,1,2.....

Description

Keywords

Distribution, Delta Function, Product Of Distributions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Fisher, B; Taş, Kenan, "On the non-commutative neutrix product of the distributions x(+)(lambda) and x(+)(mu)", Acta Mathematica Sinica-English Series, Vol.22, No.6, pp.1639-1644, (2006).

WoS Q

Scopus Q

Source

Acta Mathematica Sinica-English Series

Volume

22

Issue

6

Start Page

1639

End Page

1644