On the non-commutative neutrix product of the distributions x(+)(lambda) and x(+)(mu)
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Heidelberg
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let f and g be distributions and let g(n) = (g * delta(n))(x), where delta(n)(x) is a certain sequence converging to the Dirac delta function. The non-commutative neutrix product f circle g of f and g is defined to be the limit of the sequence {fg(n)}, provided its limit h exists in the sense that
[GRAPHICS]
for all functions p in D. It is proved that
(x(+)(lambda)ln(p)x(+)) circle (x(+)(mu)ln(q)x(+)) = x(+)(lambda+mu)ln(p+q)x(+), (x(-)(lambda)ln(p)x(-)) circle (x(-)mu ln(q)x(-)) = x(-)(lambda+mu)ln(p+q)x(-),
for lambda + mu < -1; lambda,mu,lambda+mu not equal -1,-2,... and p,q = 0,1,2.....
Description
Keywords
Distribution, Delta Function, Product Of Distributions
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Fisher, B; Taş, Kenan, "On the non-commutative neutrix product of the distributions x(+)(lambda) and x(+)(mu)", Acta Mathematica Sinica-English Series, Vol.22, No.6, pp.1639-1644, (2006).
WoS Q
Scopus Q
Source
Acta Mathematica Sinica-English Series
Volume
22
Issue
6
Start Page
1639
End Page
1644