Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Measurement of Edge Detection Algorithms in Clean and Noisy Environment

dc.authorid Elbasi, Ersin/0000-0002-8603-1435
dc.authorscopusid 57191244948
dc.authorscopusid 56875440000
dc.authorscopusid 12805511000
dc.authorwosid Elbasi, Ersin/Aad-9077-2020
dc.authorwosid Maras, Hakan/G-1236-2017
dc.contributor.author Mahmood, Alaa Mohammed
dc.contributor.author Maras, Hadi Hakan
dc.contributor.author Elbasi, Ersin
dc.contributor.authorID 34410 tr_TR
dc.date.accessioned 2020-04-19T23:52:22Z
dc.date.available 2020-04-19T23:52:22Z
dc.date.issued 2014
dc.department Çankaya University en_US
dc.department-temp [Mahmood, Alaa Mohammed; Maras, Hadi Hakan] Cankaya Univ, Dept Comp Engn, Ankara, Turkey; [Elbasi, Ersin] IPEK Univ, Dept Digital Game Design, Ankara, Turkey en_US
dc.description Chevron; EMC2; et al.; itkz; MIKRO Information Handling and Distribution FZE; Thomson Reuters en_US
dc.description Elbasi, Ersin/0000-0002-8603-1435 en_US
dc.description.abstract The subject of identification edge in images has a wide application in various fields for that it's considered one of the important topics in a digital image processing. There are many algorithms to detect the edge in images, but the performance of these algorithms depends on the type of image, the environment of the image and the threshold value of the edge algorithm. The objective of this paper is to evaluate five algorithms of edge detection which are Roberts, Sobel, Prewitt, LOG, and Canny in multi environments clean and noisy by using several types of original images (binary image, graphic image, high frequency image, low frequency image, median frequency image, and texture image) and then determine the best algorithm. In noisy environment the following noises was used Gaussian, salt and pepper and speckle. It's known that each edge detection algorithm has a threshold value, if the current pixel value is less than the defined threshold in strength, it will be considered an edge pixel. The change rate of the threshold value in all environments is also explained through this study. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/ICAICT.2014.7035954
dc.identifier.isbn 9781479941209
dc.identifier.issn 2378-8232
dc.identifier.scopus 2-s2.0-84988268517
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/ICAICT.2014.7035954
dc.identifier.wos WOS:000392725100004
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 8th IEEE International Conference on Application of Information and Communication Technologies (AICT) -- OCT 15-17, 2014 -- Astana, KAZAKHSTAN en_US
dc.relation.ispartofseries International Conference on Application of Information and Communication Technologies
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject Edge Detection en_US
dc.subject Noise Environment en_US
dc.subject Measurement en_US
dc.title Measurement of Edge Detection Algorithms in Clean and Noisy Environment tr_TR
dc.title Measurement of Edge Detection Algorithms in Clean and Noisy Environment en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: