Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Novel Fractional Dengue Transmission Model in the Presence of Wolbachia Using Stochastic Based Artificial Neural Network

dc.authorscopusid 58307258800
dc.authorscopusid 57670455100
dc.authorscopusid 7005872966
dc.authorscopusid 15047920200
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Ahmed, Iftikhar/Jbq-4534-2023
dc.contributor.author Faiz, Zeshan
dc.contributor.author Ahmed, Iftikhar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Javeed, Shumaila
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-05-27T11:54:18Z
dc.date.available 2024-05-27T11:54:18Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Faiz, Zeshan; Ahmed, Iftikhar; Javeed, Shumaila] COMSATS Univ Islamabad, Dept Math, Islamabad 45550, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Bucharest 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan; [Javeed, Shumaila] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 13505, Lebanon; [Javeed, Shumaila] Near East Univ, Math Res Ctr, Dept Math, TR-99138 Nicosia, Turkiye en_US
dc.description.abstract The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model (FDTM) in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network (LM-NN) technique. The fractional dengue transmission model (FDTM) consists of 12 compartments. The human population is divided into four compartments; susceptible humans (Sh), exposed humans (Eh), infectious humans (Ih), and recovered humans (Rh). Wolbachia-infected and Wolbachia-uninfected mosquito population is also divided into four compartments: aquatic (eggs, larvae, pupae), susceptible, exposed, and infectious. We investigated three different cases of vertical transmission probability (77), namely when Wolbachia-free mosquitoes persist only (77 = 0.6), when both types of mosquitoes persist (77 = 0.8), and when Wolbachia-carrying mosquitoes persist only (77 = 1). The objective of this study is to investigate the effectiveness of Wolbachia in reducing dengue and presenting the numerical results by using the stochastic structure LM-NN approach with 10 hidden layers of neurons for three different cases of the fractional order derivatives (alpha = 0.4, 0.6, 0.8). LM-NN approach includes a training, validation, and testing procedure to minimize the mean square error (MSE) values using the reference dataset (obtained by solving the model using the Adams-Bashforth-Moulton method (ABM). The distribution of data is 80% data for training, 10% for validation, and, 10% for testing purpose) results. A comprehensive investigation is accessible to observe the competence, precision, capacity, and efficiency of the suggested LM-NN approach by executing the MSE, state transitions findings, and regression analysis. The effectiveness of the LM-NN approach for solving the FDTM is demonstrated by the overlap of the findings with trustworthy measures, which achieves a precision of up to 10-4. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Faiz, Zeshan...et al. (2024). "A Novel Fractional Dengue Transmission Model in the Presence of Wolbachia Using Stochastic Based Artificial Neural Network", CMES - Computer Modeling in Engineering and Sciences, Vol. 139, No. 2, pp. 1217-1238. en_US
dc.identifier.doi 10.32604/cmes.2023.029879
dc.identifier.endpage 1238 en_US
dc.identifier.issn 1526-1492
dc.identifier.issn 1526-1506
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85185266411
dc.identifier.scopusquality Q3
dc.identifier.startpage 1217 en_US
dc.identifier.uri https://doi.org/10.32604/cmes.2023.029879
dc.identifier.volume 139 en_US
dc.identifier.wos WOS:001149362500001
dc.identifier.wosquality Q2
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Tech Science Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 6
dc.subject Wolbachia en_US
dc.subject Dengue en_US
dc.subject Neural Network en_US
dc.subject Vertical Transmission en_US
dc.subject Mean Square Error en_US
dc.subject Levenberg-Marquardt en_US
dc.title A Novel Fractional Dengue Transmission Model in the Presence of Wolbachia Using Stochastic Based Artificial Neural Network tr_TR
dc.title A Novel Fractional Dengue Transmission Model in the Presence of Wolbachia Using Stochastic Based Artificial Neural Network en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: