New quantum estimates in the setting of fractional calculus theory
dc.authorid | Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320 | |
dc.authorid | Hammouch, Zakia/0000-0001-7349-6922 | |
dc.authorscopusid | 57200041124 | |
dc.authorscopusid | 12768922000 | |
dc.authorscopusid | 36105179200 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 56715663200 | |
dc.authorwosid | Hammouch, Zakia/D-3532-2011 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Rashid, Saima/Aaf-7976-2021 | |
dc.authorwosid | Nisar, Prof. Kottakkaran Sooppy/F-7559-2015 | |
dc.contributor.author | Rashid, Saima | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Hammouch, Zakia | |
dc.contributor.author | Ashraf, Rehana | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Nisar, Kottakkaran Sooppy | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-12-31T11:28:15Z | |
dc.date.available | 2020-12-31T11:28:15Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam; [Ashraf, Rehana] Lahore Coll Women Univ, Dept Math, Lahore, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan; [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawasir, Saudi Arabia | en_US |
dc.description | Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320; Hammouch, Zakia/0000-0001-7349-6922 | en_US |
dc.description.abstract | In this article, the investigation is centered around the quantum estimates by utilizing quantum Hahn integral operator via the quantum shift operator eta psi(q)(zeta) = q zeta + (1 - q)eta, zeta is an element of [mu, nu], eta = mu+ omega/(1-q), 0 < q < 1, omega >= 0. Our strategy includes fractional calculus, Jackson's q-integral, the main ideas of quantum calculus, and a generalization used in the frame of convex functions. We presented, in general, three types of fractional quantum integral inequalities that can be utilized to explain orthogonal polynomials, and exploring some estimation problems with shifting estimations of fractional order e(1) and the q-numbers have yielded fascinating outcomes. As an application viewpoint, an illustrative example shows the effectiveness of q, omega-derivative for boundary value problem. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Rashid, Saima...et al. (2020). "New quantum estimates in the setting of fractional calculus theory", Advances in Difference Equations, Vol. 2020, No. 1. | en_US |
dc.identifier.doi | 10.1186/s13662-020-02843-2 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85088556292 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-020-02843-2 | |
dc.identifier.volume | 2020 | en_US |
dc.identifier.wos | WOS:000555953300002 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 25 | |
dc.subject | Hahn Integral Operator | en_US |
dc.subject | Reverse Minkowski Quantum Hahn Integral Inequality | en_US |
dc.subject | Reverse Holder Quantum Hahn Integral Inequality | en_US |
dc.title | New quantum estimates in the setting of fractional calculus theory | tr_TR |
dc.title | New Quantum Estimates in the Setting of Fractional Calculus Theory | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |