Modified Atangana-Baleanu Fractional Differential Operators
dc.authorscopusid | 16319225300 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Ibrahim, Rabha/D-3312-2017 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Ibrahim, Rabha W. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-04-25T07:35:32Z | |
dc.date.available | 2024-04-25T07:35:32Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ibrahim, Rabha W.] Water Resources & Appl Math Res Lab WRAM, Nagpur 440027, Maharashtra, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
dc.description.abstract | Fractional differential operators are mostly investigated for functions of real variables. In this paper, we present two fractional differential operators for a class of normalized analytic functions in the open unit disk. The suggested operators are investigated according to concepts in geometric function theory, using the concepts of convexity and starlikeness. Therefore, we reformulate the new operators in the Ma-Minda class of analytic functions, in order to act on normalized analytic functions. Our method is based on subordination, superordination, and majorization theory. As an application, we employ these operators to generalize Bernoulli's equation and a special class of Briot-Bouquet equations. The solution of the generalized equation is formulated by a hypergeometric function. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.citation | Ibrahim, Rabha W.; Baleanu, Dumitru. (2022). "Modified Atangana-Baleanu Fractional Differential Operators", Proceedings of the Institute of Mathematics and Mechanics, Vol.48, No.SI, pp.56-67. | en_US |
dc.identifier.doi | 10.30546/2409-4994.48.2022.5667 | |
dc.identifier.endpage | 67 | en_US |
dc.identifier.issn | 2409-4986 | |
dc.identifier.issn | 2409-4994 | |
dc.identifier.issue | Special Issue | en_US |
dc.identifier.scopus | 2-s2.0-85142630835 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 56 | en_US |
dc.identifier.uri | https://doi.org/10.30546/2409-4994.48.2022.5667 | |
dc.identifier.volume | 48 | en_US |
dc.identifier.wos | WOS:000931992300004 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | inst Mathematics & Mechanics, Natl Acad Sciences Azerbaijan | en_US |
dc.relation.ispartof | Proceedings of the Institute of Mathematics and Mechanics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.subject | Subordination And Superordination | en_US |
dc.subject | Univalent Function | en_US |
dc.subject | Analytic Function | en_US |
dc.subject | Open Unit Disk | en_US |
dc.subject | Special Function | en_US |
dc.subject | Fractional Calculus | en_US |
dc.subject | Fractional Differential Operator | en_US |
dc.title | Modified Atangana-Baleanu Fractional Differential Operators | tr_TR |
dc.title | Modified Atangana-Baleanu Fractional Differential Operators | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 3 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |