Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modified Atangana-Baleanu Fractional Differential Operators

dc.authorscopusid 16319225300
dc.authorscopusid 7005872966
dc.authorwosid Ibrahim, Rabha/D-3312-2017
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-25T07:35:32Z
dc.date.available 2024-04-25T07:35:32Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Ibrahim, Rabha W.] Water Resources & Appl Math Res Lab WRAM, Nagpur 440027, Maharashtra, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description.abstract Fractional differential operators are mostly investigated for functions of real variables. In this paper, we present two fractional differential operators for a class of normalized analytic functions in the open unit disk. The suggested operators are investigated according to concepts in geometric function theory, using the concepts of convexity and starlikeness. Therefore, we reformulate the new operators in the Ma-Minda class of analytic functions, in order to act on normalized analytic functions. Our method is based on subordination, superordination, and majorization theory. As an application, we employ these operators to generalize Bernoulli's equation and a special class of Briot-Bouquet equations. The solution of the generalized equation is formulated by a hypergeometric function. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.citation Ibrahim, Rabha W.; Baleanu, Dumitru. (2022). "Modified Atangana-Baleanu Fractional Differential Operators", Proceedings of the Institute of Mathematics and Mechanics, Vol.48, No.SI, pp.56-67. en_US
dc.identifier.doi 10.30546/2409-4994.48.2022.5667
dc.identifier.endpage 67 en_US
dc.identifier.issn 2409-4986
dc.identifier.issn 2409-4994
dc.identifier.issue Special Issue en_US
dc.identifier.scopus 2-s2.0-85142630835
dc.identifier.scopusquality Q2
dc.identifier.startpage 56 en_US
dc.identifier.uri https://doi.org/10.30546/2409-4994.48.2022.5667
dc.identifier.volume 48 en_US
dc.identifier.wos WOS:000931992300004
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher inst Mathematics & Mechanics, Natl Acad Sciences Azerbaijan en_US
dc.relation.ispartof Proceedings of the Institute of Mathematics and Mechanics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Subordination And Superordination en_US
dc.subject Univalent Function en_US
dc.subject Analytic Function en_US
dc.subject Open Unit Disk en_US
dc.subject Special Function en_US
dc.subject Fractional Calculus en_US
dc.subject Fractional Differential Operator en_US
dc.title Modified Atangana-Baleanu Fractional Differential Operators tr_TR
dc.title Modified Atangana-Baleanu Fractional Differential Operators en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
273 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: