Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Covid-19 Pandemic Microplastics Environmental Impacts Predicted by Deep Random Forest (Drf) Predictive Model

dc.authorid Sabonchi, Arkan Kh Shakr/0000-0001-9970-1090
dc.authorid Ahangari Nanehkaran, Yaser/0000-0002-8055-3195
dc.authorscopusid 59187532800
dc.authorscopusid 57200159134
dc.authorscopusid 57211004694
dc.authorwosid Nanehkaran, Yaser/Aan-6150-2021
dc.authorwosid Sabonchi, Arkan Kh Shakr/Aax-8403-2020
dc.contributor.author Chen, Liping
dc.contributor.author Sabonchi, Arkan K. S.
dc.contributor.author Nanehkaran, Yaser A.
dc.date.accessioned 2025-05-11T17:03:05Z
dc.date.available 2025-05-11T17:03:05Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Chen, Liping] Weinan Normal Univ, Sch Comp Sci & Technol, Weinan 714099, Shaanxi, Peoples R China; [Sabonchi, Arkan K. S.] Imam Jafar Al Sadiq Univ, Dept Comp Tech Engn, Baghdad 10011, Iraq; [Nanehkaran, Yaser A.] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Jiangsu, Peoples R China; [Nanehkaran, Yaser A.] Cankaya Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-06790 Ankara, Turkiye en_US
dc.description Sabonchi, Arkan Kh Shakr/0000-0001-9970-1090; Ahangari Nanehkaran, Yaser/0000-0002-8055-3195 en_US
dc.description.abstract BackgroundMicroplastic pollution is a pressing issue with far-reaching environmental and public health consequences. This study delves into the intricacies of predicting microplastic pollution during the COVID-19 pandemic in Tehran, Iran.MethodsThe research introduces a rigorous comparative analysis that evaluates the predictive prowess of the Deep Random Forest algorithm and established benchmarks, such as Random Forest, Decision Trees, Gradient Boosting, AdaBoost, and Support Vector Machine. The evaluation process encompasses a meticulous 70-30 training-testing split of the main data set. Performance is assessed by analysis metrics, including ROC and statistical errors. The primary data set encompasses distinct categories, including household wastes, hospital wastes, clinics wastes, and unknown-originated susceptible waste which is categorized in Infected items, PPEs, SUPs, Test kits, Medical packages, Unknown-originated pandemic mircoplastic waste. Deliberately, this data set was partitioned into training and testing subsets, ensuring the robustness and reliability of subsequent analyses. Approximately 70% of the main database was allocated to the training data set, with the remaining 30% constituting the testing data set.ResultsThe findings underscore the proposed algorithm's supremacy, boasting an impressive AUC = 0.941. This exceptional score reflects the model's precision in categorizing microplastics. These results have profound implications for environmental management and public health during pandemics.ConclusionsThe study positions the proposed model as a potent tool for microplastic pollution prediction, encouraging further research to refine predictive models and tap into new data sources for a more comprehensive understanding of microplastic dynamics in urban settings. en_US
dc.description.sponsorship National Nature Sciences Foundation of China [42250410321] en_US
dc.description.sponsorship This research was funded by the National Nature Sciences Foundation of China with Grant No.42250410321. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1186/s12302-024-01019-z
dc.identifier.issn 2190-4707
dc.identifier.issn 2190-4715
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85209148316
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1186/s12302-024-01019-z
dc.identifier.uri https://hdl.handle.net/20.500.12416/9574
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:001351556200001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Microplastics en_US
dc.subject Covid-19 en_US
dc.subject Pandemic Plastic en_US
dc.subject Environmental Impact en_US
dc.subject Public Health en_US
dc.title Covid-19 Pandemic Microplastics Environmental Impacts Predicted by Deep Random Forest (Drf) Predictive Model en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files