Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

On Shifted Jacobi Spectral Approximations for Solving Fractional Differential Equations

dc.contributor.author Bhrawy, A. H.
dc.contributor.author Baleanu, D.
dc.contributor.author Ezz-Eldien, S. S.
dc.contributor.author Doha, E. H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-05-03T20:53:31Z
dc.date.accessioned 2025-09-18T12:09:00Z
dc.date.available 2020-05-03T20:53:31Z
dc.date.available 2025-09-18T12:09:00Z
dc.date.issued 2013
dc.description Doha, Eid/0000-0002-7781-6871 en_US
dc.description.abstract In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value. problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. (C) 2013 Elsevier Inc. All rights reserved. en_US
dc.description.publishedMonth 4
dc.identifier.doi 10.1016/j.amc.2013.01.051
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-84875460922
dc.identifier.uri https://doi.org/10.1016/j.amc.2013.01.051
dc.identifier.uri https://hdl.handle.net/123456789/11259
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Multi-Term Fractional Differential Equations en_US
dc.subject Nonlinear Fractional Initial Value Problems en_US
dc.subject Spectral Methods en_US
dc.subject Shifted Jacobi Polynomials en_US
dc.subject Jacobi-Gauss-Lobatto Quadrature en_US
dc.subject Caputo Derivative en_US
dc.title On Shifted Jacobi Spectral Approximations for Solving Fractional Differential Equations en_US
dc.title On Shifted Jacobi Spectral Approximations For Solving Fractional Differential Equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Doha, Eid/0000-0002-7781-6871
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 6602467804
gdc.author.scopusid 14319102000
gdc.author.scopusid 7005872966
gdc.author.scopusid 38861466200
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Doha, Eid/L-1723-2019
gdc.author.wosid Ezz-Eldien, Samer/Agk-8059-2022
gdc.author.wosid Bhrawy, Ali/D-4745-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Doha, E. H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, A. H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, A. H.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Ezz-Eldien, S. S.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt en_US
gdc.description.endpage 8056 en_US
gdc.description.issue 15 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 8042 en_US
gdc.description.volume 219 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2059042028
gdc.identifier.wos WOS:000318051700014
gdc.openalex.fwci 12.24089059
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 49
gdc.plumx.crossrefcites 34
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 82
gdc.scopus.citedcount 82
gdc.wos.citedcount 76
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files