An existence result for a superlinear fractional differential equation
No Thumbnail Available
Date
2010
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Science Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We establish the existence and uniqueness of solution for the boundary value problem (0)D(t)(alpha)(x') + a(t)x(lambda) = 0, t > 0, x' (0) = 0, lim(t ->+infinity) x(t) = 1, where (0)D(t)(alpha) designates the Riemann-Liouville derivative of order alpha epsilon (0, 1) and lambda > 1. Our result might be useful for establishing a non-integer variant of the Atkinson classical theorem on the oscillation of Emden-Fowler equations
Description
Keywords
Sequential Differential Equation, Emden-Fowler Equation, Nonlinear Oscillation
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Baleanu, D., Mustafa, O.G., Agarwal, R.P. (2010). An existence result for a superlinear fractional differential equation. Applied Mathematics Letters, 23(9), 1129-1132. http://dx.doi.org/10.1016/j.aml.2010.04.049
WoS Q
Scopus Q
Source
Applied Mathematics Letters
Volume
23
Issue
9
Start Page
1129
End Page
1132