Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations

dc.authorid Iqbal, Muhammad Kashif/0000-0003-4442-7498
dc.authorid Abbas, Dr. Muhammad/0000-0002-0491-1528
dc.authorscopusid 58172325400
dc.authorscopusid 43660960400
dc.authorscopusid 57203844999
dc.authorscopusid 7005872966
dc.authorwosid Amin, Muhammad/Aab-5519-2021
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Abbas, Muhammad/K-8190-2019
dc.authorwosid Iqbal, Muhammad Kashif/Hkm-9371-2023
dc.contributor.author Amin, Muhammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Abbas, Muhammad
dc.contributor.author Iqbal, Muhammad Kashif
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2019-12-27T12:17:09Z
dc.date.available 2019-12-27T12:17:09Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Amin, Muhammad] Natl Coll Business Adm & Econ, Dept Math, Lahore, Pakistan; [Abbas, Muhammad] Univ Sargodha, Dept Math, Sargodha, Pakistan; [Iqbal, Muhammad Kashif] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey en_US
dc.description Iqbal, Muhammad Kashif/0000-0003-4442-7498; Abbas, Dr. Muhammad/0000-0002-0491-1528 en_US
dc.description.abstract This paper presents a novel approach to numerical solution of a class of fourth-order time fractional partial differential equations (PDEs). The finite difference formulation has been used for temporal discretization, whereas the space discretization is achieved by means of non-polynomial quintic spline method. The proposed algorithm is proved to be stable and convergent. In order to corroborate this work, some test problems have been considered, and the computational outcomes are compared with those found in the exiting literature. It is revealed that the presented scheme is more accurate as compared to current variants on the topic. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Amin, Muhammad...et al. (2019). "Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations", Advances in Difference Equations. en_US
dc.identifier.doi 10.1186/s13662-019-2125-1
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85065816386
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-019-2125-1
dc.identifier.wos WOS:000468130400003
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 31
dc.subject Non-Polynomial Quintic Spline en_US
dc.subject Backward Euler Method en_US
dc.subject Time Fractional Partial Differential Equation en_US
dc.subject Caputo Fractional Derivative en_US
dc.title Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations tr_TR
dc.title Non-Polynomial Quintic Spline for Numerical Solution of Fourth-Order Time Fractional Partial Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 27
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: