Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives

dc.authorid Hammouch, Zakia/0000-0001-7349-6922
dc.authorid , Khaled/0000-0001-6381-6806
dc.authorscopusid 14522704300
dc.authorscopusid 36840571200
dc.authorscopusid 12768922000
dc.authorscopusid 7005872966
dc.authorwosid Hammouch, Zakia/D-3532-2011
dc.authorwosid Mohamed, Mohamed/Jxl-9259-2024
dc.authorwosid Saad, Khaled/Aap-9543-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Khader, M. M.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Saad, Khaled M.
dc.contributor.author Hammouch, Zakia
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-07T13:38:43Z
dc.date.available 2022-03-07T13:38:43Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Khader, M. M.] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia; [Khader, M. M.] Benha Univ, Fac Sci, Dept Math, Banha, Egypt; [Saad, Khaled M.] Najran Univ, Coll Sci & Arts, Dept Math, Najran, Saudi Arabia; [Saad, Khaled M.] Taiz Univ, Fac Appl Sci, Dept Math, Taizi, Yemen; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Fac Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description Hammouch, Zakia/0000-0001-7349-6922; , Khaled/0000-0001-6381-6806 en_US
dc.description.abstract The purpose of this paper is to investigate the spectral collocation method with help of Chebyshev polynomials. We consider the space fractional Korteweg-de Vries and the space fractional Korteweg-de Vries-Burgers equations based on the Caputo-Fabrizio fractional derivative. The proposed method reduces the models under study to a set of ordinary differential equations and then solves the system via the finite difference method. To the best our knowledge this is the first work which studies the Caputo-Fabrizio space fractional derivative for the proposed equations. The results were validated in the case of the classic differential equations in comparison with the exact solution and the calculation of the absolute error, and in the case of fractional differential equations, the results were verified by calculating the residual error function. In both cases, the results are very accurate and effective. The presented method is easy and accurate, and can be applied to many fractional systems. (c) 2020 IMACS. Published by Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 3
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Khader, M. M...et al. (2021). "A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives", Applied Numerical Mathematics, Vol. 161, pp. 137-146. en_US
dc.identifier.doi 10.1016/j.apnum.2020.10.024
dc.identifier.endpage 146 en_US
dc.identifier.issn 0168-9274
dc.identifier.issn 1873-5460
dc.identifier.scopus 2-s2.0-85096233863
dc.identifier.scopusquality Q1
dc.identifier.startpage 137 en_US
dc.identifier.uri https://doi.org/10.1016/j.apnum.2020.10.024
dc.identifier.volume 161 en_US
dc.identifier.wos WOS:000613718300010
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 85
dc.subject Fractional Caputo-Fabrizio Derivative en_US
dc.subject Chebyshev Polynomials Approximation en_US
dc.subject Finite Difference Method en_US
dc.subject Kdv And Kdv-Burgers Equations en_US
dc.title A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives tr_TR
dc.title A Spectral Collocation Method for Solving Fractional Kdv and Kdv-Burgers Equations With Non-Singular Kernel Derivatives en_US
dc.type Article en_US
dc.wos.citedbyCount 76
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: