Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions

dc.authorid Al-Omari, Shrideh/0000-0001-8955-5552
dc.authorscopusid 14828685700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Al-Omari, Shrideh/E-5065-2017
dc.contributor.author Al-Omari, Shrideh K. Q.
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-05-02T04:57:53Z
dc.date.available 2020-05-02T04:57:53Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Al-Omari, Shrideh K. Q.] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey en_US
dc.description Al-Omari, Shrideh/0000-0001-8955-5552 en_US
dc.description.abstract In this paper, we aim to discuss the classical theory of the quadratic-phase integral operator on sets of integrable Boehmians. We provide delta sequences and derive convolution theorems by using certain convolution products of weight functions of exponential type. Meanwhile, we make a free use of the delta sequences and the convolution theorem to derive the prerequisite axioms, which essentially establish the Boehmian spaces of the generalized quadratic-phase integral operator. Further, we nominate two continuous embeddings between the integrable set of functions and the integrable set of Boehmians. Furthermore, we introduce the definition and the properties of the generalized quadratic-phase integral operator and obtain an inversion formula in the class of Boehmians. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Al-Omari, S.K.Q.; Baleanu, D., "A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions", Mathematical Methods in the Applied Sciences, Vol. 43, No. 7, pp. 4168-4176, (2020). en_US
dc.identifier.doi 10.1002/mma.6181
dc.identifier.endpage 4176 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85079403036
dc.identifier.scopusquality Q1
dc.identifier.startpage 4168 en_US
dc.identifier.uri https://doi.org/10.1002/mma.6181
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:000512529900001
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Boehmian en_US
dc.subject Polynomial en_US
dc.subject Quadratic-Phase Integral en_US
dc.subject Special Affine Fourier Integral en_US
dc.subject Ultraboehmian en_US
dc.title A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions tr_TR
dc.title A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: