Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Spectral analysis of the direct sum hamiltonian operators

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Natl inquiry Services Centre Pty Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this paper we investigate the deficiency indices theory and the selfad-joint and nonselfadjoint (dissipative, accumulative) extensions of the minimal symmetric direct sum Hamiltonian operators. In particular using the equivalence of the Lax-Phillips scattering matrix and the Sz.-Nagy-Foias characteristic function, we prove that all root (eigen and associated) vectors of the maximal dissipative extensions of the minimal symmetric direct sum Hamiltonian operators are complete in the Hilbert spaces.

Description

Allahverdiev, Bilender P./0000-0002-9315-4652

Keywords

47A20, 47A40, 47A75, 47B44, 34L40, 34B40, 34L25, 47A45, Hamiltonian System, Dissipative Operator, Characteristic Function, Scattering Matrix, Completeness Theorem

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Allahverdiev B.P., Uğurlu, E. (2016). Spectral analysis of the direct sum hamiltonian operators. Quaestiones Mathematicae, 39(6), 733-750. http://dx.doi.org/10.2989/16073606.2015.1134697

WoS Q

Q3

Scopus Q

Q2

Source

Volume

39

Issue

6

Start Page

733

End Page

750