Spectral analysis of the direct sum hamiltonian operators
No Thumbnail Available
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
Natl inquiry Services Centre Pty Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this paper we investigate the deficiency indices theory and the selfad-joint and nonselfadjoint (dissipative, accumulative) extensions of the minimal symmetric direct sum Hamiltonian operators. In particular using the equivalence of the Lax-Phillips scattering matrix and the Sz.-Nagy-Foias characteristic function, we prove that all root (eigen and associated) vectors of the maximal dissipative extensions of the minimal symmetric direct sum Hamiltonian operators are complete in the Hilbert spaces.
Description
Allahverdiev, Bilender P./0000-0002-9315-4652
Keywords
47A20, 47A40, 47A75, 47B44, 34L40, 34B40, 34L25, 47A45, Hamiltonian System, Dissipative Operator, Characteristic Function, Scattering Matrix, Completeness Theorem
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Allahverdiev B.P., Uğurlu, E. (2016). Spectral analysis of the direct sum hamiltonian operators. Quaestiones Mathematicae, 39(6), 733-750. http://dx.doi.org/10.2989/16073606.2015.1134697
WoS Q
Q3
Scopus Q
Q2
Source
Volume
39
Issue
6
Start Page
733
End Page
750