Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new insight to the Hamiltonian systems with a finite number of spectral parameters

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this article, we introduce a new first-order differential equation containing a finite number of spectral parameters and some results on the solutions of this equation. In particular, with the aid of the nested-circles approach we share a lower bound for the number of linearly independent square-integrable solutions of the equation. We share some limit-point criterias. Moreover, we show that some known and unknown scalar and matrix differential equations can be embedded into this new first-order equation. Using the obtained results we present some additional results for some system of scalar multiparameter differential equations. Finally, we share some relations between the characteristic function of a regular boundary-value problem and the kernel of related integral operator.

Description

Keywords

Primary, Secondary, First-Order System, Weyl'S Theory, Multiparameter Eigenvalue Problem

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ekin, Uğurlu. (2023). "A new insight to the Hamiltonian systems with a finite number of spectral parameters", Quaestiones Mathematicae, Vol.46, No. 5, pp. 887-908.

WoS Q

Q3

Scopus Q

Q2

Source

Volume

46

Issue

5

Start Page

887

End Page

908