Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Machine Learning-Driven Approach for Reducing Tool Wear in Die-Sinking Electrical Discharge Machining

dc.authorscopusid 7003885158
dc.authorscopusid 55371892800
dc.authorwosid Ayli, Ulku Ece/J-2906-2016
dc.contributor.author Cogun, Can
dc.contributor.author Ayli, Ece
dc.contributor.other Mekatronik Mühendisliği
dc.contributor.other Makine Mühendisliği
dc.date.accessioned 2025-05-11T17:03:38Z
dc.date.available 2025-05-11T17:03:38Z
dc.date.issued 2025
dc.department Çankaya University en_US
dc.department-temp [Cogun, Can] Cankaya Univ, Mechatron Engn Dept, Ankara, Turkiye; [Ayli, Ece] Cankaya Univ, Mech Engn Dept, Ankara, Turkiye en_US
dc.description.abstract This study examines the use of machine learning (ML) techniques to optimize the basic machining parameters and protrusion dimensions that affect tool shape degeneration in die-sinking electric discharge machining (EDM). The primary objective is to decrease errors and enhance prediction and optimization effectiveness. This study introduces a completely novel tool geometry model aimed at minimizing tool shape degeneration, which, to our knowledge, has not been previously documented in the literature. Additionally, this research represents the first instance of employing ML techniques to generate data for addressing this specific type of problem, further advancing the field of die-sinking EDM. The pivotal machining parameters include discharge current, pulse time and machining depth. Three ML approaches are implemented in this investigation: Artificial Neural Network (ANN), Adaptive-Network-Based Fuzzy Inference System (ANFIS), and Support Vector Machine (SVM). In comparison with experimental outcomes, the ANN technique exhibited superior predictive ability with an coefficient of determination (R2) of 0.99985 and an Mean Relative Error (MRE) of 0.854%. Four distinct EDM machining scenarios are presented and machining parameters and protrusion dimensions are optimized using the ANN technique to decrease tool shape degeneration. Optimizing the machining parameters and diagonal dimensions of the protrusion substantially reduced tool shape degeneration. This research demonstrates the effectiveness of ANN in optimizing machining parameters and improving tool performance in die-sinking EDM. A significant reduction in total wear area of 66.7% was achieved with a considerably lower time cost through the optimized ANN network. While the study demonstrates promising results, its reliance on specific datasets for training may limit the generalizability of the model to broader machining scenarios. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK) en_US
dc.description.sponsorship Open access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s13369-025-10010-6
dc.identifier.issn 2193-567X
dc.identifier.issn 2191-4281
dc.identifier.scopus 2-s2.0-85218834723
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s13369-025-10010-6
dc.identifier.uri https://hdl.handle.net/20.500.12416/9611
dc.identifier.wos WOS:001416876200001
dc.identifier.wosquality Q2
dc.institutionauthor Çoğun, Can
dc.institutionauthor Aylı, Ülkü Ece
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Electric Discharge Machining en_US
dc.subject Tool Wear en_US
dc.subject Tool Shape Degeneration en_US
dc.subject Machine Learning en_US
dc.subject Artificial Neural Network en_US
dc.subject Adaptive-Network-Based Fuzzy Inference System en_US
dc.subject Support Vector Machine en_US
dc.title Machine Learning-Driven Approach for Reducing Tool Wear in Die-Sinking Electrical Discharge Machining en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 6a65abd2-7b4a-480e-874b-7f0d2d1a74ba
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery 6a65abd2-7b4a-480e-874b-7f0d2d1a74ba
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication.latestForDiscovery 5b0b2c59-0735-4593-b820-ff3847d58827

Files