Numerical Study of Third-Order Ordinary Differential Equations Using a New Class of Two Derivative Runge-Kutta Type Methods
| dc.contributor.author | Senu, N. | |
| dc.contributor.author | Ahmadian, A. | |
| dc.contributor.author | Ibrahim, S. N. I. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Lee, K. C. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-12-25T11:13:48Z | |
| dc.date.accessioned | 2025-09-18T12:48:12Z | |
| dc.date.available | 2020-12-25T11:13:48Z | |
| dc.date.available | 2025-09-18T12:48:12Z | |
| dc.date.issued | 2020 | |
| dc.description | Ahmadian, Ali/0000-0002-0106-7050 | en_US |
| dc.description.abstract | This study introduces new special two-derivative Runge-Kutta type (STDRKT) methods involving the fourth derivative of the solution for solving third-order ordinary differential equa-tions. In this regards, rooted tree theory and the corresponding B-series theory is proposed to derive order conditions for STDRKT methods. Besides, explicit two-stages fifth order and three-stages sixth order STDRKT methods are derived and stability,consistency and convergence of STDRKT methods are analysed in details. Accuracy and effectiveness of the proposed techniques are vali-dated by a number of various test problems and compared to existing methods in the literature. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/). | en_US |
| dc.description.publishedMonth | 8 | |
| dc.description.sponsorship | Malaysia Ministry of Education [FRGS/1/2018/STG06/UPM/02/2]; Universiti Putra Malaysia | en_US |
| dc.description.sponsorship | The authors declare that there is no partiality of interest related to the publication of this paper. This research work was financially supported by Malaysia Ministry of Education under FRGS grant (No.: FRGS/1/2018/STG06/UPM/02/2) and Universiti Putra Malaysia. | en_US |
| dc.identifier.citation | Lee, K. C...et al. (2020). "Numerical study of third-order ordinary differential equations using a new class of two derivative Runge-Kutta type methods", Alexandria Engineering Journal, Vol. 59, No. 4, pp. 2449-2467. | en_US |
| dc.identifier.doi | 10.1016/j.aej.2020.03.008 | |
| dc.identifier.issn | 1110-0168 | |
| dc.identifier.issn | 2090-2670 | |
| dc.identifier.scopus | 2-s2.0-85083295268 | |
| dc.identifier.uri | https://doi.org/10.1016/j.aej.2020.03.008 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12012 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Runge-Kutta Type Methods | en_US |
| dc.subject | B-Series | en_US |
| dc.subject | Rooted Tree | en_US |
| dc.subject | Third-Order Ordinary Differential Equations | en_US |
| dc.subject | Algebraic Order | en_US |
| dc.title | Numerical Study of Third-Order Ordinary Differential Equations Using a New Class of Two Derivative Runge-Kutta Type Methods | en_US |
| dc.title | Numerical study of third-order ordinary differential equations using a new class of two derivative Runge-Kutta type methods | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Ahmadian, Ali/0000-0002-0106-7050 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57204627741 | |
| gdc.author.scopusid | 55670963500 | |
| gdc.author.scopusid | 55602202100 | |
| gdc.author.scopusid | 55546762400 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Ibrahim, Siti/I-3664-2014 | |
| gdc.author.wosid | Chien, Lee/Ace-4349-2022 | |
| gdc.author.wosid | Senu, Norazak/G-2776-2014 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ahmadian, Ali/N-3697-2015 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Lee, K. C.; Senu, N.; Ahmadian, A.; Ibrahim, S. N. I.] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia; [Senu, N.; Ibrahim, S. N. I.] Univ Putra Malaysia, Dept Math, Upm Serdang 43400, Selangor, Malaysia; [Ahmadian, A.] Univ Kebangsaan Malaysia, Inst Visual Informat, Ukm Bangi 43600, Malaysia; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, R-76900 Magurele, Romania | en_US |
| gdc.description.endpage | 2467 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 2449 | en_US |
| gdc.description.volume | 59 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3017197822 | |
| gdc.identifier.wos | WOS:000563768600019 | |
| gdc.openalex.fwci | 4.05021943 | |
| gdc.openalex.normalizedpercentile | 0.95 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 17 | |
| gdc.plumx.crossrefcites | 19 | |
| gdc.plumx.mendeley | 15 | |
| gdc.plumx.scopuscites | 17 | |
| gdc.scopus.citedcount | 17 | |
| gdc.wos.citedcount | 11 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |