Deep learning methods with pre-trained word embeddings and pre-trained transformers for extreme multi label text classification
Files
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In recent years, there has been a considerable increase in textual documents online. This increase requires the creation of highly improved machine learning methods to classify text in many different domains. The effectiveness of these machine learning methods depends on the model capacity to understand the complex nature of the unstructured data and the relations of features that exist. Many different machine learning methods were proposed for a long time to solve text classification problems, such as SVM, kNN, and Rocchio classification. These shallow learning methods have achieved doubtless success in many different domains. For big and unstructured data like text, deep learning methods which can learn representations and features from the input data wtihout using any feature extraction methods have shown to be one of the major solutions. In this study, we explore the accuracy of recent recommended deep learning methods for multi-label text classification starting with simple RNN, CNN models to pretrained transformer models. We evaluated these methods' performances by computing multi-label evaluation metrics and compared the results with the previous studies. © 2021 IEEE
Description
Keywords
Deep Learning, Machine Learning, Multi-Label Text Classification, Transformers, Word Embedding
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Erciyes, Necdet Eren (2022). Deep learning methods with pre-trained word embeddings and pre-trained transformers for extreme multi label text classification / Çoklu etiket sınıflandırması için önceden eğitilmiş kelime vektörleri ve önceden eğitilmiş transformer modelleri ile derin öğrenme yöntemleri. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi Fen Bilimleri Enstitüsü.
WoS Q
N/A
Scopus Q
N/A
Source
Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 15 September 2021 through 17 September 2021 -- Ankara -- 176826
Volume
Issue
Start Page
50
End Page
55