Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hamilton-Jacobi and fractional like action with time scaling

dc.authorid Herzallah, Mohamed/0000-0003-3514-3709
dc.authorscopusid 6505909904
dc.authorscopusid 7003657106
dc.authorscopusid 7005872966
dc.authorscopusid 6602156175
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Muslih, Sami/Aaf-4974-2020
dc.contributor.author Herzallah, Mohamed A. E.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Muslih, Sami I.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rabei, Eqab M.
dc.contributor.other Matematik
dc.date.accessioned 2017-02-17T08:53:56Z
dc.date.available 2017-02-17T08:53:56Z
dc.date.issued 2011
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Herzallah, Mohamed A. E.] Majmaah Univ, Coll Sci Zulfi, Zulfi, Saudi Arabia; [Herzallah, Mohamed A. E.] Zagazig Univ, Fac Sci, Zagazig, Egypt; [Muslih, Sami I.] So Illinois Univ, Dept Mech Engn, Carbondale, IL 62901 USA; [Muslih, Sami I.] Al Azhar Univ Gaza, Gaza, Israel; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Rabei, Eqab M.] Al Al Bayt Univ, Dept Phys, Mafraq 25113, Jordan en_US
dc.description Herzallah, Mohamed/0000-0003-3514-3709 en_US
dc.description.abstract This paper represents the Hamilton-Jacobi formulation for fractional variational problem with fractional like action written as an integration over a time scaling parameter. Also we developed the fractional Hamiltonian formulation for the fractional like action. In all the given calculations, the most popular Riemann-Liouville (RL) and Caputo fractional derivatives are employed. An example illustrates our approach. en_US
dc.description.publishedMonth 12
dc.description.sponsorship Department of Mechanical Engineering and Energy Processes (MEEP) en_US
dc.description.sponsorship The first author would like to thank College of Science in Zulfi, Majmaah University for providing the necessary facilities. The second author would like to thank the Department of Mechanical Engineering and Energy Processes (MEEP) and Om P. Agrawal for financial support and providing the necessary facilities. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Herzallah, M.A.E...et al. (2011). Hamilton-Jacobi and fractional like action with time scaling. Nonlinear Dynamics, 66(4), 549-555. http://dx.doi.org/10.1007/s11071-010-9933-x en_US
dc.identifier.doi 10.1007/s11071-010-9933-x
dc.identifier.endpage 555 en_US
dc.identifier.issn 0924-090X
dc.identifier.issn 1573-269X
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-82255164101
dc.identifier.scopusquality Q1
dc.identifier.startpage 549 en_US
dc.identifier.uri https://doi.org/10.1007/s11071-010-9933-x
dc.identifier.volume 66 en_US
dc.identifier.wos WOS:000297171700009
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 31
dc.subject Fractional Calculus en_US
dc.subject Fractional Derivatives en_US
dc.subject Fractional Variational Principle en_US
dc.subject Fractional Hamilton-Jacobi Formulation en_US
dc.title Hamilton-Jacobi and fractional like action with time scaling tr_TR
dc.title Hamilton-Jacobi and Fractional Like Action With Time Scaling en_US
dc.type Article en_US
dc.wos.citedbyCount 22
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: