Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Analytical Solutions for Klein-Gordon and Helmholtz Equations in Fractal Dimensional Space

dc.contributor.author Yang, Xiao-Jun
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Gao, Feng
dc.contributor.other Matematik
dc.date.accessioned 2025-09-23T12:47:38Z
dc.date.available 2025-09-23T12:47:38Z
dc.date.issued 2017
dc.description Yang, Xiao-Jun/0000-0003-0009-4599 en_US
dc.description.abstract We consider the local fractional Klein Gordon equation and Helmholtz equation in (1+1) fractal dimensional space. The local fractional Laplace series expansion method is used to solve the local fractional partial differential equations in fractal dimensional space. We present the non differentiable analytical solutions and the corresponding graphs. The obtained results illustrate the accuracy and efficiency of this approach to local fractional partial differential equations. en_US
dc.description.sponsorship State Key Research Development Program of the People's Republic of China [2016YFC0600705]; Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD2014] en_US
dc.description.sponsorship This work is supported by the State Key Research Development Program of the People's Republic of China (Grant No. 2016YFC0600705) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD2014). en_US
dc.identifier.citation Yang, Xiao-Jun; Baleanu, Dumitru; Gao, Feng, "New analytical solutions for klein-gordon and helmholtz equations in fractal dimensional space", Proceedings Of The Romanian Academy Series A-Mathematics Physics Technical Sciences İnformation Science, Vol.18, No.3, pp.231-238, (2017). en_US
dc.identifier.issn 1454-9069
dc.identifier.scopus 2-s2.0-85031812595
dc.identifier.uri https://hdl.handle.net/20.500.12416/15181
dc.language.iso en en_US
dc.publisher Editura Acad Romane en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Klein-Gordon Equation en_US
dc.subject Helmholtz Equation en_US
dc.subject Analytical Solution en_US
dc.subject Laplace Transform en_US
dc.subject Series Expansion Method en_US
dc.subject Local Fractional Derivative en_US
dc.title New Analytical Solutions for Klein-Gordon and Helmholtz Equations in Fractal Dimensional Space en_US
dc.title New analytical solutions for klein-gordon and helmholtz equations in fractal dimensional space tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yang, Xiao-Jun/0000-0003-0009-4599
gdc.author.scopusid 37006104500
gdc.author.scopusid 7005872966
gdc.author.scopusid 56410271800
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Yang, Xiao-Jun/E-8311-2011
gdc.author.wosid Gao, Feng/Grx-5768-2022
gdc.author.yokid 56389
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Yang, Xiao-Jun; Gao, Feng] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221116, Peoples R China; [Yang, Xiao-Jun; Gao, Feng] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-077125 Bucharest, Romania en_US
gdc.description.endpage 238 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 231 en_US
gdc.description.volume 18 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.wos WOS:000411046400006
gdc.publishedmonth 7
gdc.scopus.citedcount 36
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 34
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files