Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Existence of A Periodic Mild Solution for A Nonlinear Fractional Differential Equation

dc.authorid Herzallah, Mohamed/0000-0003-3514-3709
dc.authorid Baleanu, Dumitru/0000-0002-0286-7244
dc.authorscopusid 6505909904
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Herzallah, Mohamed A. E.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-06T18:54:34Z
dc.date.available 2020-04-06T18:54:34Z
dc.date.issued 2012
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Herzallah, Mohamed A. E.] Zagazig Univ, Fac Sci, Zagazig, Egypt; [Herzallah, Mohamed A. E.] Majmaah Univ, Coll Sci Zulfi, Al Majmaah, Saudi Arabia; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania en_US
dc.description Herzallah, Mohamed/0000-0003-3514-3709; Baleanu, Dumitru/0000-0002-0286-7244 en_US
dc.description.abstract The aim of this manuscript is to analyze the existence of a periodic mild solution to the problem of the following nonlinear fractional differential equation (R)(0)D(t)(alpha)u(t) - lambda u(t) = f(t, u(t)), u(0) = u(1) = 0, 1 < alpha < 2, lambda is an element of R, where D-R(0)t(alpha), denotes the Riemann-Liouville fractional derivative. We obtained the expressions of the general solution for the linear fractional differential equation by making use of the Laplace and inverse Laplace transforms. By making use of the Banach contraction mapping principle and the Schaefer fixed point theorem, the existence results of one or at least one mild solution for a nonlinear fractional differential equation were given. (C) 2011 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 11
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Herzallah, Mohamed A. E.; Baleanu, Dumitru, "Existence of a periodic mild solution for a nonlinear fractional differential equation" Vol.64. No. 10, pp. 3059-3064, (2012) en_US
dc.identifier.doi 10.1016/j.camwa.2011.12.060
dc.identifier.endpage 3064 en_US
dc.identifier.issn 0898-1221
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-84868197956
dc.identifier.scopusquality Q1
dc.identifier.startpage 3059 en_US
dc.identifier.uri https://doi.org/10.1016/j.camwa.2011.12.060
dc.identifier.volume 64 en_US
dc.identifier.wos WOS:000311460600011
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 18
dc.subject Fractional Derivative en_US
dc.subject Fractional Nonlinear Differential Equations en_US
dc.subject Boundary Value Problem en_US
dc.subject Schaefer Fixed Point Theorem en_US
dc.title Existence of A Periodic Mild Solution for A Nonlinear Fractional Differential Equation tr_TR
dc.title Existence of a Periodic Mild Solution for a Nonlinear Fractional Differential Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumitru Baleanu.pdf
Size:
200.4 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: