Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Concept-Based Sentiment Analysis Approach for Arabic

dc.contributor.author Sever, Hayri
dc.contributor.author Nasser, Ahmed
dc.contributor.authorID 11916 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-06-17T11:51:02Z
dc.date.accessioned 2025-09-18T16:07:10Z
dc.date.available 2021-06-17T11:51:02Z
dc.date.available 2025-09-18T16:07:10Z
dc.date.issued 2020
dc.description Raoof Nasser, Ahmed/0000-0002-9731-8167 en_US
dc.description.abstract Concept-Based Sentiment Analysis (CBSA) methods are considered to be more advanced and more accurate when it compared to ordinary Sentiment Analysis methods, because it has the ability of detecting the emotions that conveyed by multi-word expressions concepts in language. This paper presented a CBSA system for Arabic language which utilizes both of machine learning approaches and concept-based sentiment lexicon. For extracting concepts from Arabic, a rule-based concept extraction algorithm called semantic parser is proposed. Different types of feature extraction and representation techniques are experimented among the building prosses of the sentiment analysis model for the presented Arabic CBSA system. A comprehensive and comparative experiments using different types of classification methods and classifier fusion models, together with different combinations of our proposed feature sets, are used to evaluate and test the presented CBSA system. The experiment results showed that the best performance for the sentiment analysis model is achieved by combined Support Vector Machine-Logistic Regression (SVM-LR) model where it obtained a F-score value of 93.23% using the Concept-Based-Features + Lexicon-Based-Features + Word2vec-Features (CBF + LEX+ W2V) features combinations. en_US
dc.description.publishedMonth 9
dc.identifier.citation Nasser, Ahmed; Sever, Hayri (2020). "A Concept-based Sentiment Analysis Approach for Arabic", The International Arab Journal of Information Technology, Vol. 17, No. 5, pp. 778-788. en_US
dc.identifier.doi 10.34028/iajit/17/5/11
dc.identifier.issn 1683-3198
dc.identifier.scopus 2-s2.0-85089834272
dc.identifier.uri https://doi.org/10.34028/iajit/17/5/11
dc.identifier.uri https://hdl.handle.net/20.500.12416/14677
dc.language.iso en en_US
dc.publisher Zarka Private Univ en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Arabic Sentiment Analysis en_US
dc.subject Concept-Based Sentiment Analysis en_US
dc.subject Machine Learning And Ensemble Learning en_US
dc.title A Concept-Based Sentiment Analysis Approach for Arabic en_US
dc.title A Concept-based Sentiment Analysis Approach for Arabic tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Raoof Nasser, Ahmed/0000-0002-9731-8167
gdc.author.institutional Sever, Hayri
gdc.author.scopusid 57204524172
gdc.author.scopusid 55902090100
gdc.author.wosid Nasser, Ahmed/Aaw-3498-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nasser, Ahmed] Univ Technol Baghdad, Control & Syst Engn Dept, Baghdad, Iraq; [Sever, Hayri] Cankaya Univ, Dept Comp Engn, Etimesgut, Turkey en_US
gdc.description.endpage 788 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 778 en_US
gdc.description.volume 17 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W3061664184
gdc.identifier.wos WOS:000582101100010
gdc.openalex.fwci 0.88115729
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 3
gdc.plumx.mendeley 34
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.wos.citedcount 7
relation.isAuthorOfPublication a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isAuthorOfPublication.latestForDiscovery a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files