Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Applications of Artificial Neural Network Technique To Polypyrrole Gas Sensor Data for Environmental Analysis

dc.contributor.authorDarwish, Hamida
dc.contributor.authorJafarian, Ahmad
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorSenel, Mehmet
dc.contributor.authorOkur, Salih
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-05-15T08:11:18Z
dc.date.available2020-05-15T08:11:18Z
dc.date.issued2015
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this study, the electrochemical deposition technique was used to fabricate Polyprrole thin film. The QCM piezoelectric sensors have been used to investigate the possible sensing mechanisms and adsorption-desorption kinetics of the polyprrole films to compare sensor sensitivities of the atmosferic gasses such as humidity, CO2 and O2. The Langmuir model and ANN Technique have been used to Polypyrrole Gas Sensor Data for environmental analysis. For this, feedback, three layer ANN has been used for the experimental data for adsorption and desorption process of PPY versus humidity, PPY versus CO2 and PPy versus O2. Different number of hidden layer used in this work and good result gets with 14 neurons. Totally 2064 experimental data used for fitting ANN. The randomly selected data was used to training and the ANN was terminated when the error was less than 10-3.en_US
dc.description.publishedMonth11
dc.identifier.citationDarwish, H...et al. (2015). "Applications of Artificial Neural Network Technique To Polypyrrole Gas Sensor Data for Environmental Analysis",Journal of Computational and Theoretical Nanoscience, Vol. 12, No. 11, pp. 4392-4398.en_US
dc.identifier.doi10.1166/jctn.2015.4373
dc.identifier.endpage4398en_US
dc.identifier.issn15461955
dc.identifier.issue11en_US
dc.identifier.startpage4392en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/3804
dc.identifier.volume12en_US
dc.language.isoenen_US
dc.publisherAmerican Scientific Publishersen_US
dc.relation.ispartofJournal of Computational and Theoretical Nanoscienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdsorption and Desorptionen_US
dc.subjectCO2en_US
dc.subjectANN Analysisen_US
dc.subjectHumidityen_US
dc.subjectGas Sensorsen_US
dc.subjectPolypyrrole-QCMen_US
dc.subjectO2en_US
dc.titleApplications of Artificial Neural Network Technique To Polypyrrole Gas Sensor Data for Environmental Analysistr_TR
dc.titleApplications of Artificial Neural Network Technique To Polypyrrole Gas Sensor Data for Environmental Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: