Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Generalized Barycentric Rational Interpolation Method for Generalized Abel Integral Equations

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

The paper is devoted to the numerical solution of generalized Abel integral equation. First, the generalized barycentric rational interpolants have been introduced and their properties investigated thoroughly. Then, a numerical method based on these barycentric rational interpolations and the Legendre–Gauss quadrature rule is developed for solving the generalized Abel integral equation. The main advantages of the presented method is that it provides an infinitely smooth approximate solution with no real poles for the generalized Abel integral equation. © 2020, Springer Nature India Private Limited.

Description

Keywords

Error Analysis, Generalized Abel Integral Equation, Generalized Barycentric Rational Interpolation, Legendre–Gauss Quadrature

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Azin, H.; Mohammadi, F.; Baleanu, Dumitru (2020). "A Generalized Barycentric Rational Interpolation Method for Generalized Abel Integral Equations", International Journal of Applied and Computational Mathematics, Vol. 6, No. 5.

WoS Q

N/A

Scopus Q

Q2

Source

International Journal of Applied and Computational Mathematics

Volume

6

Issue

5

Start Page

End Page