Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New Derivatives on the Fractal Subset of Real-Line

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this manuscript we introduced the generalized fractional Riemann-Liouville and Caputo like derivative for functions defined on fractal sets. The Gamma, Mittag-Leffler and Beta functions were defined on the fractal sets. The non-local Laplace transformation is given and applied for solving linear and non-linear fractal equations. The advantage of using these new nonlocal derivatives on the fractals subset of real-line lies in the fact that they are better at modeling processes with memory effect.

Description

Khalili Golmankhaneh, Alireza/0000-0002-5008-0163

Keywords

Memory Processes, Generalized Mittag-Leffler Function, Generalized Gamma Function, Generalized Beta Function, Fractal Calculus, Triadic Cantor Set, Non-Local Laplace Transformation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Golmankhaneh, A.R., Baleanu, D. (2016). New derivatives on the fractal subset of real-line. Entropy, 18(2). http://dx.doi.org/10.3390/e18020001

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
61

Source

Volume

18

Issue

2

Start Page

End Page

PlumX Metrics
Citations

CrossRef : 56

Scopus : 36

Captures

Mendeley Readers : 7

SCOPUS™ Citations

36

checked on Nov 25, 2025

Web of Science™ Citations

31

checked on Nov 25, 2025

Page Views

2

checked on Nov 25, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
49.84979929

Sustainable Development Goals

SDG data is not available