Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorid | Ferrara, Massimiliano/0000-0002-3663-836X | |
dc.authorid | Ahmadian, Ali/0000-0002-0106-7050 | |
dc.authorid | Salimi, Mehdi/0000-0002-6537-6346 | |
dc.authorscopusid | 23028598900 | |
dc.authorscopusid | 55602202100 | |
dc.authorscopusid | 56189811500 | |
dc.authorscopusid | 56224779700 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Salimi, Mehdi/Abe-9446-2021 | |
dc.authorwosid | Salahshour, Soheil/K-4817-2019 | |
dc.authorwosid | Ferrara, Massimiliano/P-8797-2014 | |
dc.authorwosid | Ahmadian, Ali/N-3697-2015 | |
dc.contributor.author | Salahshour, S. | |
dc.contributor.author | Ahmadian, A. | |
dc.contributor.author | Salimi, M. | |
dc.contributor.author | Ferrara, M. | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-02-12T07:11:53Z | |
dc.date.available | 2020-02-12T07:11:53Z | |
dc.date.issued | 2019 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Salahshour, S.] Islamic Azad Univ, Mobarakeh Branch, Young Researchers & Elite Club, Mobarakeh, Iran; [Ahmadian, A.] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia; [Ahmadian, A.; Salimi, M.; Ferrara, M.] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, I-89125 Reggio Di Calabria, Italy; [Ahmadian, A.; Salimi, M.; Ferrara, M.] Univ Mediterranea Reggio Calabria, Decis Lab, I-89125 Reggio Di Calabria, Italy; [Salimi, M.] Tech Univ Dresden, Dept Math, Ctr Dynam, D-01062 Dresden, Germany; [Ferrara, M.] Bocconi Univ, ICRIOS Invernizzi Ctr Res Innovat Org Strateg & E, I-20136 Milan, Italy; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, R-76900 Magurele, Romania | en_US |
dc.description | Salahshour, Soheil/0000-0003-1390-3551; Ferrara, Massimiliano/0000-0002-3663-836X; Ahmadian, Ali/0000-0002-0106-7050; Salimi, Mehdi/0000-0002-6537-6346 | en_US |
dc.description.abstract | Realizing the behavior of the solution in the asymptotic situations is essential for repetitive applications in the control theory and modeling of the real-world systems. This study discusses a robust and definitive attitude to find the interval approximate asymptotic solutions of fractional differential equations (FDEs) with the Atangana-Baleanu (A-B) derivative. In fact, such critical tasks require to observe precisely the behavior of the noninterval case at first. In this regard, we initially shed light on the noninterval cases and analyze the behavior of the approximate asymptotic solutions, and then, we introduce the A-B derivative for FDEs under interval arithmetic and develop a new and reliable approximation approach for fractional interval differential equations with the interval A-B derivative to get the interval approximate asymptotic solutions. We exploit Laplace transforms to get the asymptotic approximate solution based on the interval asymptotic A-B fractional derivatives under interval arithmetic. The techniques developed here provide essential tools for finding interval approximation asymptotic solutions under interval fractional derivatives with nonsingular Mittag-Leffler kernels. Two cases arising in the real-world systems are modeled under interval notion and given to interpret the behavior of the interval approximate asymptotic solutions under different conditions as well as to validate this new approach. This study highlights the importance of the asymptotic solutions for FDEs regardless of interval or noninterval parameters. Published under license by AIP Publishing. | en_US |
dc.description.publishedMonth | 8 | |
dc.description.sponsorship | Ministry of Education, Malaysia, under FRGS grant [01-01-18-2031FR]; Department of Law, Economics and Human Sciences - University Mediterranea of Reggio Calabria, Italy [1/2018] | en_US |
dc.description.sponsorship | This research was financially supported by the Ministry of Education, Malaysia, under FRGS grant (Grant No. 01-01-18-2031FR) and the Department of Law, Economics and Human Sciences - University Mediterranea of Reggio Calabria, Italy, by "Decisions-Project No. 1/2018." | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Salahshour, S...et al. (2019). "Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative", Chaos, Vol. 29, No. 8. | en_US |
dc.identifier.doi | 10.1063/1.5096022 | |
dc.identifier.issn | 1054-1500 | |
dc.identifier.issn | 1089-7682 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.pmid | 31472490 | |
dc.identifier.scopus | 2-s2.0-85070717260 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1063/1.5096022 | |
dc.identifier.volume | 29 | en_US |
dc.identifier.wos | WOS:000489227100011 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Physics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 30 | |
dc.title | Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative | tr_TR |
dc.title | Asymptotic Solutions of Fractional Interval Differential Equations With Nonsingular Kernel Derivative | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 26 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: