Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative

dc.authorid Salahshour, Soheil/0000-0003-1390-3551
dc.authorid Ferrara, Massimiliano/0000-0002-3663-836X
dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorid Salimi, Mehdi/0000-0002-6537-6346
dc.authorscopusid 23028598900
dc.authorscopusid 55602202100
dc.authorscopusid 56189811500
dc.authorscopusid 56224779700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Salimi, Mehdi/Abe-9446-2021
dc.authorwosid Salahshour, Soheil/K-4817-2019
dc.authorwosid Ferrara, Massimiliano/P-8797-2014
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Salahshour, S.
dc.contributor.author Ahmadian, A.
dc.contributor.author Salimi, M.
dc.contributor.author Ferrara, M.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-02-12T07:11:53Z
dc.date.available 2020-02-12T07:11:53Z
dc.date.issued 2019
dc.department Çankaya University en_US
dc.department-temp [Salahshour, S.] Islamic Azad Univ, Mobarakeh Branch, Young Researchers & Elite Club, Mobarakeh, Iran; [Ahmadian, A.] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia; [Ahmadian, A.; Salimi, M.; Ferrara, M.] Univ Mediterranea Reggio Calabria, Dept Law Econ & Human Sci, I-89125 Reggio Di Calabria, Italy; [Ahmadian, A.; Salimi, M.; Ferrara, M.] Univ Mediterranea Reggio Calabria, Decis Lab, I-89125 Reggio Di Calabria, Italy; [Salimi, M.] Tech Univ Dresden, Dept Math, Ctr Dynam, D-01062 Dresden, Germany; [Ferrara, M.] Bocconi Univ, ICRIOS Invernizzi Ctr Res Innovat Org Strateg & E, I-20136 Milan, Italy; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, R-76900 Magurele, Romania en_US
dc.description Salahshour, Soheil/0000-0003-1390-3551; Ferrara, Massimiliano/0000-0002-3663-836X; Ahmadian, Ali/0000-0002-0106-7050; Salimi, Mehdi/0000-0002-6537-6346 en_US
dc.description.abstract Realizing the behavior of the solution in the asymptotic situations is essential for repetitive applications in the control theory and modeling of the real-world systems. This study discusses a robust and definitive attitude to find the interval approximate asymptotic solutions of fractional differential equations (FDEs) with the Atangana-Baleanu (A-B) derivative. In fact, such critical tasks require to observe precisely the behavior of the noninterval case at first. In this regard, we initially shed light on the noninterval cases and analyze the behavior of the approximate asymptotic solutions, and then, we introduce the A-B derivative for FDEs under interval arithmetic and develop a new and reliable approximation approach for fractional interval differential equations with the interval A-B derivative to get the interval approximate asymptotic solutions. We exploit Laplace transforms to get the asymptotic approximate solution based on the interval asymptotic A-B fractional derivatives under interval arithmetic. The techniques developed here provide essential tools for finding interval approximation asymptotic solutions under interval fractional derivatives with nonsingular Mittag-Leffler kernels. Two cases arising in the real-world systems are modeled under interval notion and given to interpret the behavior of the interval approximate asymptotic solutions under different conditions as well as to validate this new approach. This study highlights the importance of the asymptotic solutions for FDEs regardless of interval or noninterval parameters. Published under license by AIP Publishing. en_US
dc.description.publishedMonth 8
dc.description.sponsorship Ministry of Education, Malaysia, under FRGS grant [01-01-18-2031FR]; Department of Law, Economics and Human Sciences - University Mediterranea of Reggio Calabria, Italy [1/2018] en_US
dc.description.sponsorship This research was financially supported by the Ministry of Education, Malaysia, under FRGS grant (Grant No. 01-01-18-2031FR) and the Department of Law, Economics and Human Sciences - University Mediterranea of Reggio Calabria, Italy, by "Decisions-Project No. 1/2018." en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Salahshour, S...et al. (2019). "Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative", Chaos, Vol. 29, No. 8. en_US
dc.identifier.doi 10.1063/1.5096022
dc.identifier.issn 1054-1500
dc.identifier.issn 1089-7682
dc.identifier.issue 8 en_US
dc.identifier.pmid 31472490
dc.identifier.scopus 2-s2.0-85070717260
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1063/1.5096022
dc.identifier.volume 29 en_US
dc.identifier.wos WOS:000489227100011
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Amer inst Physics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 30
dc.title Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative tr_TR
dc.title Asymptotic Solutions of Fractional Interval Differential Equations With Nonsingular Kernel Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 26
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: