Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorAhmadian, Ali
dc.contributor.authorSalimi, M.
dc.contributor.authorFerrara, M.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-02-12T07:11:53Z
dc.date.available2020-02-12T07:11:53Z
dc.date.issued2019
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik - Bilgisayar Bölümüen_US
dc.description.abstractRealizing the behavior of the solution in the asymptotic situations is essential for repetitive applications in the control theory and modeling of the real-world systems. This study discusses a robust and definitive attitude to find the interval approximate asymptotic solutions of fractional differential equations (FDEs) with the Atangana-Baleanu (A-B) derivative. In fact, such critical tasks require to observe precisely the behavior of the noninterval case at first. In this regard, we initially shed light on the noninterval cases and analyze the behavior of the approximate asymptotic solutions, and then, we introduce the A-B derivative for FDEs under interval arithmetic and develop a new and reliable approximation approach for fractional interval differential equations with the interval A-B derivative to get the interval approximate asymptotic solutions. We exploit Laplace transforms to get the asymptotic approximate solution based on the interval asymptotic A-B fractional derivatives under interval arithmetic. The techniques developed here provide essential tools for finding interval approximation asymptotic solutions under interval fractional derivatives with nonsingular Mittag-Leffler kernels. Two cases arising in the real-world systems are modeled under interval notion and given to interpret the behavior of the interval approximate asymptotic solutions under different conditions as well as to validate this new approach. This study highlights the importance of the asymptotic solutions for FDEs regardless of interval or noninterval parameters. Published under license by AIP Publishing.en_US
dc.description.publishedMonth8
dc.identifier.citationSalahshour, S...et al. (2019). "Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative", Chaos, Vol. 29, No. 8.en_US
dc.identifier.doi10.1063/1.5096022
dc.identifier.issn1054-1500
dc.identifier.issue8en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/2421
dc.identifier.volume29en_US
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.relation.ispartofChaosen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectValued Functionsen_US
dc.subjectIntegral-Equationsen_US
dc.subjectTau Methoden_US
dc.subjectStabilityen_US
dc.subjectCalculusen_US
dc.subjectOrderen_US
dc.subjectBehavioren_US
dc.subjectModelsen_US
dc.titleAsymptotic solutions of fractional interval differential equations with nonsingular kernel derivativetr_TR
dc.titleAsymptotic Solutions of Fractional Interval Differential Equations With Nonsingular Kernel Derivativeen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: