Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Dynamics of Fractional Order Delay Model of Coronavirus Disease

dc.contributor.author Zhang, Lei
dc.contributor.author Rahman, Mati Ur
dc.contributor.author Ahmad, Shabir
dc.contributor.author Riaz, Muhammad Bilal
dc.contributor.author Jarad, Fahd
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-09T21:01:37Z
dc.date.available 2025-05-09T21:01:37Z
dc.date.issued 2022
dc.description Ahmad, Shabir/0000-0002-5610-6248 en_US
dc.description.abstract The majority of infectious illnesses, such as HIV/AIDS, Hepatitis, and coronavirus (2019-nCov), are extremely dangerous. Due to the trial version of the vaccine and different forms of 2019-nCov like beta, gamma, delta throughout the world, still, there is no control on the transmission of coronavirus. Delay factors such as social distance, quarantine, immigration limitations, holiday extensions, hospitalizations, and isolation are being utilized as essential strategies to manage the outbreak of 2019-nCov. The effect of time delay on coronavirus disease transmission is explored using a non-linear fractional order in the Caputo sense in this paper. The existence theory of the model is investigated to ensure that it has at least one and unique solution. The Ulam-Hyres (UH) stability of the considered model is demonstrated to illustrate that the stated model's solution is stable. To determine the approximate solution of the suggested model, an efficient and reliable numerical approach (Adams-Bashforth) is utilized. Simulations are used to visualize the numerical data in order to understand the behavior of the different classes of the investigated model. The effects of time delay on dynamics of coronavirus transmission are shown through numerical simulations via MATLAB-17. en_US
dc.identifier.doi 10.3934/math.2022234
dc.identifier.issn 2473-6988
dc.identifier.scopus 2-s2.0-85121297653
dc.identifier.uri https://doi.org/10.3934/math.2022234
dc.identifier.uri https://hdl.handle.net/20.500.12416/9534
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Derivative en_US
dc.subject Coronavirus en_US
dc.subject Delay Model en_US
dc.subject Adams-Bashforth Method en_US
dc.title Dynamics of Fractional Order Delay Model of Coronavirus Disease en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahmad, Shabir/0000-0002-5610-6248
gdc.author.institutional Jarad, Fahd
gdc.author.scopusid 57226031538
gdc.author.scopusid 57218653063
gdc.author.scopusid 57223020766
gdc.author.scopusid 57213314244
gdc.author.scopusid 15622742900
gdc.author.wosid Jarad, Fahd/T-8333-2018
gdc.author.wosid Riaz, Muhammad/Aba-9824-2021
gdc.author.wosid Rahman, Mati Ur/Aab-7278-2022
gdc.author.wosid Ahmad, Shabir/Aaj-8499-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Zhang, Lei] Hanshan Normal Univ, Dept Math, Chaozhou 521041, Peoples R China; [Rahman, Mati Ur] Shanghai Jiao Tong Univ, Dept Math, 800 Dongchuan Rd, Shanghai, Peoples R China; [Ahmad, Shabir] Univ Malakand, Dept Math, Chakdara Dir L, Khyber Pakhtunk, Pakistan; [Riaz, Muhammad Bilal] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego St, PL-90924 Lodz, Poland; [Riaz, Muhammad Bilal] Univ Management & Technol, Dept Math, Lahore 54770, Pakistan; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Jeddah, Saudi Arabia; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 4232 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 4211 en_US
gdc.description.volume 7 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4206804158
gdc.identifier.wos WOS:000753846000001
gdc.openalex.fwci 1.90821228
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 20
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 30
gdc.scopus.citedcount 30
gdc.wos.citedcount 26
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files