Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical Solutions of Fuzzy Differential Equations By an Efficient Runge-Kutta Method With Generalized Differentiability

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this paper, an extended fourth-order Runge-Kutta method is studied to approximate the solutions of first-order fuzzy differential equations using a generalized characterization theorem. In this method, new parameters are utilized in order to enhance the order of accuracy of the solutions using evaluations of both f and f', instead of using the evaluations of f only. The proposed extended Runge-Kutta method and its error analysis, which guarantees pointwise convergence, are given in detail. Furthermore, the accuracy and efficiency of the proposed method are demonstrated in a series of numerical experiments. (C) 2016 Elsevier B.V. All rights reserved.

Description

Salahshour, Soheil/0000-0003-1390-3551; Chan, Chee Seng/0000-0001-7677-2865; Ahmadian, Ali/0000-0002-0106-7050

Keywords

Fuzzy Ordinary Differential Equations, Fuzzy Differentiability, Characterization Theorem, Error Analysis, Runge-Kutta Methods

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q2

Source

Volume

331

Issue

Start Page

47

End Page

67