Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method

dc.authorid Gomez-Aguilar, J.F./0000-0001-9403-3767
dc.authorid , Khaled/0000-0001-6381-6806
dc.authorscopusid 36840571200
dc.authorscopusid 57192991321
dc.authorscopusid 57205221485
dc.authorscopusid 7005872966
dc.authorscopusid 55389111400
dc.authorwosid Saad, Khaled/Aap-9543-2020
dc.authorwosid Alomari, A.K./L-3630-2019
dc.authorwosid Gómez Aguilar, José/I-7027-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Saad, K. M.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author AL-Shareef, Eman H. F.
dc.contributor.author Alomari, A. K.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Gomez-Aguilar, J. F.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-02-03T12:14:10Z
dc.date.available 2021-02-03T12:14:10Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Saad, K. M.; AL-Shareef, Eman H. F.] Najran Univ, Dept Math, Collage Arts & Sci, Najran, Saudi Arabia; [Saad, K. M.] Taiz Univ, Fac Appl Sci, Dept Math, Taizi, Yemen; [Alomari, A. K.] Yarmouk Univ, Fac Sci, Dept Math, Irbid, Jordan; [Baleanu, Dumitru] Cankaya Univ, Fac Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Gomez-Aguilar, J. F.] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico en_US
dc.description Gomez-Aguilar, J.F./0000-0001-9403-3767; , Khaled/0000-0001-6381-6806 en_US
dc.description.abstract In this paper we consider the homotopy analysis transform method (HATM) to solve the time fractional order Korteweg-de Vries (KdV) and Korteweg-de Vries-Burger's (KdVB) equations. The HATM is a combination of the Laplace decomposition method (LDM) and the homotopy analysis method (HAM). The fractional derivatives are defined in the Caputo sense. This method gives the solution in the form of a rapidly convergent series with h-curves are used to determine the intervals of convergent. Averaged residual errors are used to find the optimal values of h. It is found that the optimal h accelerates the convergence of the HATM, with the rate of convergence depending on the parameters in the KdV and KdVB equations. The HATM solutions are compared with exact solutions and excellent agreement is found. en_US
dc.description.publishedMonth 2
dc.description.sponsorship CONACyT: Catedras CONACyT para jovenes investigadores; SNI-CONACyT en_US
dc.description.sponsorship The authors are grateful to all of the anonymous reviewers for their valuable suggestions. Saad and AL-Shareef thank to N.F. Smyth and S. Abbasbandy for stimulating discussions during the preparation of this article. Jose Francisco Gomez Aguilar acknowledges the support provided by CONACyT: Catedras CONACyT para jovenes investigadores 2014 and SNI-CONACyT. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Saad, K. M...et al. (2020). "On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method", Chinese Journal of Physics, Vol. 63, pp. 149-162. en_US
dc.identifier.doi 10.1016/j.cjph.2019.11.004
dc.identifier.endpage 162 en_US
dc.identifier.issn 0577-9073
dc.identifier.scopus 2-s2.0-85076172061
dc.identifier.scopusquality Q1
dc.identifier.startpage 149 en_US
dc.identifier.uri https://doi.org/10.1016/j.cjph.2019.11.004
dc.identifier.volume 63 en_US
dc.identifier.wos WOS:000508893300016
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 92
dc.subject Fractional Calculus en_US
dc.subject Caputo Fractional Derivative en_US
dc.subject Homotopy Analysis Transform Method en_US
dc.subject Korteweg-De Vries Equation en_US
dc.subject Korteweg-De Vries-Burger'S Equation en_US
dc.title On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger's equations using homotopy analysis transform method tr_TR
dc.title On Exact Solutions for Time-Fractional Korteweg-De Vries and Korteweg-De Vries-burger's Equations Using Homotopy Analysis Transform Method en_US
dc.type Article en_US
dc.wos.citedbyCount 84
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: