Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Al Qurashi, Maysaa Mohamed
dc.contributor.author Sakar, Mehmet Giyas
dc.contributor.author Acan, Omer
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-04-21T20:28:28Z
dc.date.accessioned 2025-09-18T14:09:25Z
dc.date.available 2020-04-21T20:28:28Z
dc.date.available 2025-09-18T14:09:25Z
dc.date.issued 2017
dc.description Sakar, Mehmet Giyas/0000-0002-1911-2622 en_US
dc.description.abstract In this paper, we propose a new type (n + 1)-dimensional reduced differential transform method (RDTM) based on a local fractional derivative (LFD) to solve (n + 1)-dimensional local fractional partial differential equations (PDEs) in Cantor sets. The presented method is named the (n + 1)-dimensional local fractional reduced differential transform method (LFRDTM). First the theories, their proofs and also some basic properties of this procedure are given. To understand the introduced method clearly, we apply it on the (n + 1)-dimensional fractal heat-like equations (HLEs) and wave-like equations (WLEs). The applications show that this new technique is efficient, simply applicable and has powerful effects in (n + 1)-dimensional local fractional problems. en_US
dc.description.publishedMonth 7
dc.description.sponsorship International Scientific Partnership Program ISPP at King Saud University [63] en_US
dc.description.sponsorship The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 63. en_US
dc.identifier.citation Acan, Omer...et al. (2017). "Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations", Entropy, Vol. 19, No. 7. en_US
dc.identifier.doi 10.3390/e19070296
dc.identifier.issn 1099-4300
dc.identifier.scopus 2-s2.0-85022191855
dc.identifier.uri https://doi.org/10.3390/e19070296
dc.identifier.uri https://hdl.handle.net/20.500.12416/13366
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Reduced Differential Transform Method en_US
dc.subject Heat Like Equation en_US
dc.subject Wave Like Equation en_US
dc.subject Fractional Partial Differential Equations en_US
dc.subject Local Fractional Derivative en_US
dc.title Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations en_US
dc.title Analytical Approximate Solutions of (n+1)-Dimensional Fractal Heat-Like and Wave-Like Equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sakar, Mehmet Giyas/0000-0002-1911-2622
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 56790466900
gdc.author.scopusid 7005872966
gdc.author.scopusid 57045880100
gdc.author.scopusid 54945074000
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Acan, Omer/Aaq-8432-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Acan, Omer] Siirt Univ, Fac Art & Sci, Dept Math, TR-56100 Siirt, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, TR-06790 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Al Qurashi, Maysaa Mohamed] King Saud Univ, Fac Art & Sci, Dept Math, Riyadh 11495, Saudi Arabia; [Sakar, Mehmet Giyas] Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 19 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2656202132
gdc.identifier.wos WOS:000406701500006
gdc.openalex.fwci 0.99288026
gdc.openalex.normalizedpercentile 0.74
gdc.opencitations.count 7
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 7
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files