Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Solitons of the (1 + 1) - and (2 + 1) -Dimensional Chiral Nonlinear Schrodinger Equations with the Jacobi Elliptical Function Method

dc.authorscopusid 55807929000
dc.authorscopusid 56913185600
dc.authorscopusid 15047920200
dc.authorscopusid 7005872966
dc.authorscopusid 24465556600
dc.authorwosid Rezazadeh, Hadi/Aab-2926-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Tala-Tebue, Eric
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rezazadeh, Hadi
dc.contributor.author Javeed, Shumaila
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Korkmaz, Alper
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-10-24T07:55:02Z
dc.date.available 2024-10-24T07:55:02Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Tala-Tebue, Eric] Univ Dschang, Lab Automat & Informat Appl LAIA, IUT FV Bandjoun, BP 134, Bandjoun, Cameroon; [Rezazadeh, Hadi] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran; [Javeed, Shumaila] COMSATS Univ Islamabad, Dept Math, Pk Rd Chak Shahzad, Islamabad, Pakistan; [Javeed, Shumaila] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon; [Javeed, Shumaila] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd, TR-99138 Mersin, Turkiye; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan; [Korkmaz, Alper] Nord Stasse 9, Weimar, Germany en_US
dc.description.abstract Our objective is to find new analytical solutions of the (1+1)- and (2+1)-dimensional Chiral nonlinear Schrodinger (CNLS) equations using the Jacobi elliptical function method. The CNLS equations play a significant role in the development of quantum mechanics, particularly in the field of quantum Hall effect. Soliton solutions of the considered models are obtained such as, cnoidal solutions, the hyperbolic solutions and the trigonometric solutions. The obtained analytical solutions are new in the literature. The stability conditions of these solutions are also given. The obtained stable solutions are presented graphically for some specific parameters. Moreover, the conditions of modulational instability for both models are provided. The proposed method can be useful to obtain the analytical solutions of nonlinear partial differential equations. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Tala-Tebue, Eric...et al (2023). "Solitons of the (1 + 1) - and (2 + 1) -Dimensional Chiral Nonlinear Schrodinger Equations with the Jacobi Elliptical Function Method", Qualitative Theory of Dynamical Systems, Vol. 22, No. 3. en_US
dc.identifier.doi 10.1007/s12346-023-00801-3
dc.identifier.issn 1575-5460
dc.identifier.issn 1662-3592
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85160029196
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s12346-023-00801-3
dc.identifier.volume 22 en_US
dc.identifier.wos WOS:000993829700001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Chiral Nonlinear Schrodinger Equations en_US
dc.subject Jacobi Elliptical Function Method en_US
dc.subject Cnoidal Solutions en_US
dc.subject Modulation Instability en_US
dc.title Solitons of the (1 + 1) - and (2 + 1) -Dimensional Chiral Nonlinear Schrodinger Equations with the Jacobi Elliptical Function Method tr_TR
dc.title Solitons of the (1+1)- and (2+1)-Dimensional Chiral Nonlinear Schrodinger Equations With the Jacobi Elliptical Function Method en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: