Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sharp estimates of the unique solution for two-point fractional boundary value problems with conformable derivative

dc.authorid Laadjal, Zaid/0000-0003-1627-2898
dc.authorscopusid 57200968805
dc.authorscopusid 6508051762
dc.authorscopusid 15622742900
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Abdeljawad, Thabet/T-8298-2018
dc.authorwosid Laadjal, Zaid/Aeq-4744-2022
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Laadjal, Zaid
dc.contributor.author Abdeljawad, Thabet
dc.contributor.author Jarad, Fahd
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.date.accessioned 2022-12-16T12:03:18Z
dc.date.available 2022-12-16T12:03:18Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Laadjal, Zaid] Abbes Laghrour Univ, ICOSI Lab, Dept Math & Comp Sci, Khenchela, Algeria; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung, Taiwan; [Abdeljawad, Thabet] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkiye en_US
dc.description Laadjal, Zaid/0000-0003-1627-2898 en_US
dc.description.abstract In this work, we investigate the condition of the given interval which ensures the existence and uniqueness of solutions for two-point boundary value problems within conformable-type local fractional derivative. The method of analysis is obtained by the principle of contraction mapping. Furthermore, benefiting from calculating the integral of the Green's function, we are able to improve a recent result by obtaining a sharper lower bound for an eigenvalue problem. Two examples are presented to clarify the obtained results. Finally, we present an open problem for the interested reader. en_US
dc.description.sponsorship Prince Sultan University [RG-DES-2017-01-17] en_US
dc.description.sponsorship The author T. Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Laadjal, Zaid ; Abdeljawad, Thabet; Jarad, Fahd (2021). "Sharp estimates of the unique solution for two-point fractional boundary value problems with conformable derivative", Numerical Methods for Partial Differential Equations. en_US
dc.identifier.doi 10.1002/num.22760
dc.identifier.issn 0749-159X
dc.identifier.issn 1098-2426
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85099446665
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1002/num.22760
dc.identifier.volume 40 en_US
dc.identifier.wos WOS:000608436300001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Conformable Fractional Derivative en_US
dc.subject Eigenvalue Problem en_US
dc.subject Green'S Function en_US
dc.subject Two Point Boundary Value Problem en_US
dc.subject Unique Solution en_US
dc.title Sharp estimates of the unique solution for two-point fractional boundary value problems with conformable derivative tr_TR
dc.title Sharp Estimates of the Unique Solution for Two-Point Fractional Boundary Value Problems With Conformable Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery ab09a09b-0017-4ffe-a8fe-b9b0499b2c01

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: