Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

inst Mathematics & informatics

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this manuscript, we introduce a spectral technique for approximating the variable-order fractional Riccati differential equation (VOFRDE). Firstly, the solution and its space fractional derivatives is expanded as shifted Chebyshev polynomials series. Then we determine the expansion coefficients by reducing the VOFRDEs and its conditions to a system of algebraic equations. We show the accuracy and applicability of our numerical approach through four numerical examples.

Description

Z .Amin, Ahmed/0000-0003-4044-3335; Abdelkawy, Mohamed/0000-0002-9043-9644

Keywords

Fractional Calculus, Riemann-Liouville Fractional Derivative Of Variable Order, Fractional Riccati Differential Equation, Spectral Collocation Method, Shifted Chebyshev Polynomials

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Doha, Eid H.; Abdelkawy, Mohamed A.; Amin, Ahmed Z. M.; et al., "Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations", Nonlinear Analysis-Modelling and Control, Vol. 24, No. 2, pp. 176-188, (2019).

WoS Q

Q2

Scopus Q

Q1

Source

Volume

24

Issue

2

Start Page

176

End Page

188