Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Modeling of Mixed Convection in an Enclosure Using Multiple Regression, Artificial Neural Network, and Adaptive Neuro-Fuzzy Interface System Models

dc.contributor.author Ayli, Ece
dc.contributor.authorID 265836 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-06-16T11:27:06Z
dc.date.accessioned 2025-09-18T13:26:47Z
dc.date.available 2021-06-16T11:27:06Z
dc.date.available 2025-09-18T13:26:47Z
dc.date.issued 2020
dc.description.abstract In this study, the heat transfer characteristics of laminar combined forced convection through a horizontal duct are obtained with the help of the numerical methods. The effect of the geometrical parameters of the cavity and Reynolds number on the heat transfer is investigated. New heat transfer correlation for hydrodynamically fully developed, laminar combined forced convection through a horizontal duct is proposed with an average error of 6.98% and R-2 of 0.8625. The obtained correlation results are compared with the artificial neural network and adaptive neuro-fuzzy interface system models. Due to the obtained results, good agreement is identified between the numerical results and predicted adaptive neuro-fuzzy interface system results. In conclusion, it is seen that adaptive neuro-fuzzy interface system can predict the Nusselt number distribution with a higher accuracy than the developed correlation and the artificial neural network model. The developed adaptive neuro-fuzzy interface system model predicts the Nusselt number with 1.07% mean average percentage error and 0.9983 R-2 value. The effect of the different training algorithms and their ability to predict Nusselt number distribution are examined. According to the results, the Bayesian regulation algorithm gives the best approach with a 2.235% error. According to the examination that is performed in this study, the adaptive neuro-fuzzy interface system is a powerful, robust tool that can be used with confidence for predicting the thermal performance. en_US
dc.description.publishedMonth 8
dc.identifier.citation Aylı, Ece (2020). "Modeling of mixed convection in an enclosure using multiple regression, artificial neural network, and adaptive neuro-fuzzy interface system models", Proceedings of the iMeche, PartC, Journal of Mechanical Engineering Science, Vol. 234, No. 15, pp. 3078-3093. en_US
dc.identifier.doi 10.1177/0954406220914330
dc.identifier.issn 0954-4062
dc.identifier.issn 2041-2983
dc.identifier.scopus 2-s2.0-85084705891
dc.identifier.uri https://doi.org/10.1177/0954406220914330
dc.identifier.uri https://hdl.handle.net/123456789/12729
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Adaptive Neuro-Fuzzy Interface System en_US
dc.subject Correlation en_US
dc.subject Cavity en_US
dc.subject Heat Transfer en_US
dc.title Modeling of Mixed Convection in an Enclosure Using Multiple Regression, Artificial Neural Network, and Adaptive Neuro-Fuzzy Interface System Models en_US
dc.title Modeling of mixed convection in an enclosure using multiple regression, artificial neural network, and adaptive neuro-fuzzy interface system models tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 55371892800
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ayli, Ece] Cankaya Univ, Dept Mech Engn, TR-06790 Ankara, Turkey en_US
gdc.description.endpage 3093 en_US
gdc.description.issue 15 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3078 en_US
gdc.description.volume 234 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3014496927
gdc.identifier.wos WOS:000524428100001
gdc.openalex.fwci 1.65527441
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 14
gdc.plumx.crossrefcites 13
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 20
gdc.scopus.citedcount 20
gdc.wos.citedcount 20
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files