Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations

dc.authorid Shah, Kamal/0000-0002-8851-4844
dc.authorscopusid 57216589853
dc.authorscopusid 56708052700
dc.authorscopusid 37003064000
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Sarwar, Muhammad/S-8896-2016
dc.authorwosid Shah, Kamal/S-8662-2016
dc.contributor.author Eiman
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Shah, K.
dc.contributor.author Sarwar, M.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-01-28T12:20:32Z
dc.date.available 2021-01-28T12:20:32Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Eiman; Shah, K.; Sarwar, M.] Univ Malakand, Dept Math, Khyber Pakhtunkhwa, Pakistan; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Bucharest, Romania; [Baleanu, D.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description Shah, Kamal/0000-0002-8851-4844 en_US
dc.description.abstract This note is concerned with establishing existence theory of solutions to a class of implicit fractional differential equations (FODEs) involving nonsingular derivative. By using usual classical fixed point theorems of Banach and Krasnoselskii, we develop sufficient conditions for the existence of at least one solution and its uniqueness. Further, some results about Ulam-Hyers stability and its generalization are also discussed. Two suitable examples are given to demonstrate the results. en_US
dc.description.publishedMonth 4
dc.description.sponsorship Department of Mathematics, Cankaya University, Etimesgut/Ankara, Turkey en_US
dc.description.sponsorship This research work has been financially supported by Prof. Dumitru Baleanu of the Department of Mathematics, Cankaya University, Etimesgut/Ankara, Turkey. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Eiman...at all (2020). "Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations", Advances in Difference Equations, Vol. 2020, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02624-x
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85083996102
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-020-02624-x
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000530344900003
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 36
dc.subject Krasnoselskii'S Fixed Point Theorem en_US
dc.subject Caputo-Fabrizio Fractional Differential Equations en_US
dc.subject Hyers-Ulam Stability en_US
dc.title Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations tr_TR
dc.title Study on Krasnoselskii's Fixed Point Theorem for Caputo-Fabrizio Fractional Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 21
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: