Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Fractional Modeling of Cancer With Mixed Therapies

dc.contributor.author Ul Abdeen, Zain
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Javeed, Shumaila
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-12-19T12:51:38Z
dc.date.accessioned 2025-09-18T15:44:12Z
dc.date.available 2023-12-19T12:51:38Z
dc.date.available 2025-09-18T15:44:12Z
dc.date.issued 2023
dc.description.abstract Background: Cancer is the biggest cause of mortality globally, with approximately 10 million fatalities expected by 2020, or about one in every six deaths. Breast, lung, colon, rectum, and prostate cancers are the most prevalent types of cancer. Methods: In this work, fractional modeling is presented which describes the dynamics of cancer treatment with mixed therapies (immunotherapy and chemotherapy). Mathematical models of cancer treatment are important to understand the dynamical behavior of the disease. Fractional models are studied considering immunotherapy and chemotherapy to control cancer growth at the level of cell populations. The models consist of the system of fractional differential equations (FDEs). Fractional term is defined by Caputo fractional derivative. The models are solved numerically by using Adams-Bashforth-Moulton method. Results: For all fractional models the reasonable range of fractional order is between beta = 0.6 and beta = 0.9. The equilibrium points and stability analysis are presented. Moreover, positivity and boundedness of the solution are proved. Furthermore, a graphical representation of cancerous cells, immunotherapy and chemotherapy is presented to understand the behaviour of cancer treatment. Conclusions: At the end, a curve fitting procedure is presented which may help medical practitioners to treat cancer patients. en_US
dc.description.publishedMonth 8
dc.identifier.citation Javeed, Shumaila; Ul Abdeen, Zain; Baleanu, Dumitru. (2023). "Fractional Modeling of Cancer with Mixed Therapies", Frontiers in Bioscience - Landmark, Vol.28, No.8. en_US
dc.identifier.doi 10.31083/j.fbl2808174
dc.identifier.issn 2768-6701
dc.identifier.issn 2768-6698
dc.identifier.scopus 2-s2.0-85169649652
dc.identifier.uri https://doi.org/10.31083/j.fbl2808174
dc.identifier.uri https://hdl.handle.net/20.500.12416/14188
dc.language.iso en en_US
dc.publisher Imr Press en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mixed Therapies en_US
dc.subject Fractional Modeling en_US
dc.subject Stability Analysis en_US
dc.subject Adams Bashforth-Moulton Method en_US
dc.title Fractional Modeling of Cancer With Mixed Therapies en_US
dc.title Fractional Modeling of Cancer with Mixed Therapies tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 15047920200
gdc.author.scopusid 56900978800
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Javeed, Shumaila; Ul Abdeen, Zain] COMSATS Univ Islamabad, Dept Math, Islamabad 45550, Pakistan; [Javeed, Shumaila] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon; [Javeed, Shumaila] Near East Univ, Dept Math, Res Ctr, TR-99138 Nicosia 10, Turkiye; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Med Univ Hosp, Taichung 404327, Taiwan en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4385985160
gdc.identifier.pmid 37664940
gdc.identifier.wos WOS:001081110300018
gdc.openalex.fwci 1.31671454
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 1
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files