Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Filter Method for Inverse Nonlinear Sideways Heat Equation

dc.authorscopusid 33467997800
dc.authorscopusid 36049459000
dc.authorscopusid 7005872966
dc.authorscopusid 59158404900
dc.authorscopusid 57216298181
dc.authorwosid O'Regan, Donal/I-3184-2015
dc.authorwosid Nguyen, Sa/C-4845-2019
dc.authorwosid Nguyen, Can/R-4820-2018
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Nguyen, Tuan/E-3617-2019
dc.contributor.author Nguyen Anh Triet
dc.contributor.author Baleanu, Dumitru
dc.contributor.author O'Regan, Donal
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Nguyen Hoang Luc
dc.contributor.author Nguyen Can
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-28T20:13:51Z
dc.date.available 2020-04-28T20:13:51Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Nguyen Anh Triet] Thu Dau Mot Univ, Fac Nat Sci, Thu Dau Mot City, Vietnam; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Nguyen Hoang Luc] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam; [Nguyen Can] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam en_US
dc.description.abstract In this paper, we study a sideways heat equation with a nonlinear source in a bounded domain, in which the Cauchy data at x=X are given and the solution in 0 <= x < X is sought. The problem is severely ill-posed in the sense of Hadamard. Based on the fundamental solution to the sideways heat equation, we propose to solve this problem by the filter method of degree alpha, which generates a well-posed integral equation. Moreover, we show that its solution converges to the exact solution uniformly and strongly in L-p(omega,X; L-2 (R)); omega is an element of[0,X) under a priori assumptions on the exact solution. The proposed regularized method is illustrated by numerical results in the final section. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Anh Triet N...et al. (2020). "A Filter Method for Inverse Nonlinear Sideways Heat Equation", Advances In Difference Equations, Vol. 20, No. 1. en_US
dc.identifier.doi 10.1186/s13662-020-02601-4
dc.identifier.issn 1687-1847
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85083068713
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-020-02601-4
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000526565300002
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Backward Problem en_US
dc.subject Nonlinear Heat Equation en_US
dc.subject Ill-Posed Problem en_US
dc.subject Cauchy Problem en_US
dc.subject Regularization Method en_US
dc.subject Error Estimate en_US
dc.title A Filter Method for Inverse Nonlinear Sideways Heat Equation tr_TR
dc.title A Filter Method for Inverse Nonlinear Sideways Heat Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumitru Baleanu.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: