Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this research work, a new time-invariant nonlinear mathematical model in fractional (non-integer) order settings has been proposed under three most frequently employed strategies of the classical Caputo, the Caputo-Fabrizio, and the Atangana-Baleanu-Caputo with the fractional parameter chi , where 0 < chi <= 1. The model consists of a nonlinear autonomous transport equation used to study the adsorption process in order to get rid of the synthetic dyeing substances from the wastewater effluents. Such substances are used at large scale by various industries to color their products with the textile and chemical industries being at the top. The non-integer-order model suggested in the present study depicts the past behavior of the concentration of the solution on the basis of having information of the initial concentration present in the dye. Being nonlinear, it carries the possibility to have no exact solution. However, the Lipchitz condition shows the existence and uniqueness of the underlying model's solution in non-integer-order settings. From a numerical simulation viewpoint, three numerical techniques having first order convergence have been employed to illustrate the numerical results obtained.

Description

Keywords

Caputo

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Qureshi, Sania...et al. (2020). "Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels", Chaos, Vol. 30, no. 4.

WoS Q

Scopus Q

Source

Chaos

Volume

30

Issue

4

Start Page

End Page