Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Intelligent and Energy-Aware Task Scheduling in Cloud Systems

dc.contributor.author Böke, K.N.
dc.contributor.author Qadri, S.S.S.M.
dc.contributor.author Kabarcik, A.
dc.date.accessioned 2025-11-06T17:22:06Z
dc.date.available 2025-11-06T17:22:06Z
dc.date.issued 2025
dc.description The University of Texas at Dallas, USA; Prague University of Economics and Business, Czech Republic; University of Sfax, Tunisia; Ankara Science University, Turkey; Süleyman Demirel University, Turkey; Iraqi Society for Engineering Management; LR-OASIS, National Engineering School of Tunis, University of Tunis El Manar, Tunisia; Tunisian Operational Research Society (TORS), Tunisia; West Ukrainian National University, Ukraine; Chitkara University, India; Vidyasagar University, India; National Institute of Technology Durgapur, India; Kohat University of Science and Technology, Kohat, Pakistan; Lahore College for Women University, Pakistan; National Institute of Food Technology Entrepreneurship and Management, India; International Institute of Innovation “Science-Education-Development” in Warsaw, Poland; Australian University, Kuwait; University of Information Technology and Sciences (UITS), Bangladesh; ISEP-School of Engineering, Portugal; Manisa Celal Bayar University, Turkey; Noida International University en_US
dc.description.abstract The rapid advancement of information technologies has significantly reshaped industrial operations and daily life, leading to a growing demand for responsive and scalable digital services. Among the technologies addressing this growing need, cloud computing has emerged as a foundational infrastructure for delivering on-demand computing resources over the internet. However, its increasing adoption presents complex challenges such as managing dynamic workloads and minimizing virtual machine (VM) usage costs. Therefore, cloud service providers aim to optimize performance and reduce the operational costs of VMs by integrating intelligent scheduling algorithms. In response to this need, the present study explores the use of algorithms, particularly focusing on machine learning driven approaches, to enhance the sustainability and efficiency of cloud systems. Specifically, the study investigates the effectiveness of reinforcement learning through Q-learning for optimizing task scheduling against the traditional Round Robin (RR) scheduling algorithm. The primary objective is to evaluate their performance in minimizing VM usage costs within dynamic and continuously evolving cloud environments. Experimental results indicate that in reducing costs, Q-learning outperforms RR with a 33.14% improvement, demonstrating its superior adaptability and cost efficiency under varying conditions. These insights highlight the potential of reinforcement learning to enable intelligent and cost-aware scheduling strategies in modern cloud computing systems. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/978-3-032-04225-5_6
dc.identifier.isbn 9789819671748
dc.identifier.isbn 9789819664610
dc.identifier.isbn 9783032026743
dc.identifier.isbn 9783032008831
dc.identifier.isbn 9783032026712
dc.identifier.isbn 9789819671779
dc.identifier.isbn 9783031949425
dc.identifier.isbn 9789819666874
dc.identifier.isbn 9783031936968
dc.identifier.isbn 9783031941207
dc.identifier.issn 1865-0937
dc.identifier.issn 1865-0929
dc.identifier.scopus 2-s2.0-105017375163
dc.identifier.uri https://doi.org/10.1007/978-3-032-04225-5_6
dc.identifier.uri https://hdl.handle.net/20.500.12416/15723
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Communications in Computer and Information Science en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cloud Computing en_US
dc.subject Operation Cost en_US
dc.subject Q-Learning en_US
dc.subject Round Robin en_US
dc.subject Virtual Machines en_US
dc.title Intelligent and Energy-Aware Task Scheduling in Cloud Systems
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Qadri, Shah Sultan Mohiuddin
gdc.author.institutional Kabarcık, Ahmet
gdc.author.scopusid 60118697200
gdc.author.scopusid 57215307099
gdc.author.scopusid 59895059800
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Böke] Kıvılcım Naz, Department of Industrial Engineering, Çankaya Üniversitesi, Ankara, Turkey; [Qadri] Syed Shah Sultan Mohiuddin, Department of Industrial Engineering, Çankaya Üniversitesi, Ankara, Turkey; [Kabarcik] Ahmet, Department of Industrial Engineering, Çankaya Üniversitesi, Ankara, Turkey en_US
gdc.description.endpage 97 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 84 en_US
gdc.description.volume 2651 CCIS en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4413338348
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.62
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication c8663752-ffb8-444b-81df-2394dc7f0891
relation.isAuthorOfPublication c5aebc2e-3b5e-4c79-b85f-fd2a097af3a2
relation.isAuthorOfPublication.latestForDiscovery c8663752-ffb8-444b-81df-2394dc7f0891
relation.isOrgUnitOfPublication b13b59c3-89ea-4b50-b3b2-394f7f057cf8
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b13b59c3-89ea-4b50-b3b2-394f7f057cf8

Files