Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Study of a Class of Arbitrary Order Differential Equations by a Coincidence Degree Method

dc.contributor.author Shah, Kamal
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Arif, Muhammad
dc.contributor.author Khan, Rahmat Ali
dc.contributor.author Ali, Nigar
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2019-12-16T13:28:02Z
dc.date.accessioned 2025-09-18T12:09:11Z
dc.date.available 2019-12-16T13:28:02Z
dc.date.available 2025-09-18T12:09:11Z
dc.date.issued 2017
dc.description Arif, Muhammad/0000-0003-1484-7643 en_US
dc.description.abstract In this manuscript, we investigate some appropriate conditions which ensure the existence of at least one solution to a class of fractional order differential equations (FDEs) provided by {-(C)D(q)z(t) = theta(t,z(t)); t is an element of J = [0, 1], q is an element of (1, 2], z(t)vertical bar(t=theta) = phi(z), z(1) = delta(C)D(p)z(eta), p,eta is an element of(0, 1). The nonlinear function theta : J x R -> R is continuous. Further, delta is an element of(0, 1) and phi is an element of C(J, R) is a non-local function. We establish some adequate conditions for the existence of at least one solution to the considered problem by using Gronwall's inequality and a priori estimate tools called the topological degree method. We provide two examples to verify the obtained results. en_US
dc.description.publishedMonth 8
dc.description.sponsorship Abdul Wali Khan University Mardan, Pakistan; Cankaya University, Turkey en_US
dc.description.sponsorship We are thankful to the reviewers for their useful corrections and suggestions which improved the quality of this paper. This research work has been supported financially by Abdul Wali Khan University Mardan, Pakistan and Cankaya University, Turkey. en_US
dc.identifier.citation Ali, Nigar...et al. (2017) Study of a class of arbitrary order differential equations by a coincidence degree method, Boundary Value Problems en_US
dc.identifier.doi 10.1186/s13661-017-0841-6
dc.identifier.issn 1687-2770
dc.identifier.scopus 2-s2.0-85026909240
dc.identifier.uri https://doi.org/10.1186/s13661-017-0841-6
dc.identifier.uri https://hdl.handle.net/123456789/11341
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Order Differential Equations en_US
dc.subject Caputo Derivative en_US
dc.subject Condensing Operator en_US
dc.subject Gronwall'S Inequality en_US
dc.subject Topological Degree Method en_US
dc.title Study of a Class of Arbitrary Order Differential Equations by a Coincidence Degree Method en_US
dc.title Study of a class of arbitrary order differential equations by a coincidence degree method tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Arif, Muhammad/0000-0003-1484-7643
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57183603800
gdc.author.scopusid 56708052700
gdc.author.scopusid 7005872966
gdc.author.scopusid 57619099500
gdc.author.scopusid 35226550700
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Ali, Nigar/Isu-9425-2023
gdc.author.wosid Arif, Muhammad/Itt-3029-2023
gdc.author.wosid Arif, Muhammad/E-3238-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ali, Nigar; Shah, Kamal; Khan, Rahmat Ali] Univ Malakand, Dept Math, Chakadara Dir L, Khyber Pakhtunk, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Arif, Muhammad] Abdulwali Khan Univ Mardan, Dept Math, Khyber Pakhtunkhwa, Pakistan en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2744519087
gdc.identifier.wos WOS:000406906700001
gdc.openalex.fwci 2.00004311
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 5
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 7
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files