Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Infrared Target Detection using Shallow CNNs

dc.contributor.authorUzun, Engin
dc.contributor.authorAksoy, Tolga
dc.contributor.authorAkagündüz, Erdem
dc.contributor.authorID233834tr_TR
dc.date.accessioned2022-05-27T10:40:02Z
dc.date.available2022-05-27T10:40:02Z
dc.date.issued2020
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractConvolutional Neural Networks can solve the target detection problem satisfactorily. However, the proposed solutions generally require deep networks and hence, are inefficient when it comes to utilising them on performance-limited systems. In this paper, we study the infrared target detection problem using a shallow network solution, accordingly its implementation on a performance limited system. Using a dataset comprising real and simulated infrared scenes; it is observed that, when trained with the correct training strategy, shallow networks can provide satisfactory performance, even with scale-invariance capability. © 2020 IEEE.en_US
dc.identifier.citationUzun, Engin; Aksoy, Tolga; Akagündüz, Erdem (2020). "Infrared Target Detection using Shallow CNNs", 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings, Gaziantep, 5 October 2020.en_US
dc.identifier.doi10.1109/SIU49456.2020.9302501
dc.identifier.isbn9781728172064
dc.identifier.urihttp://hdl.handle.net/20.500.12416/5586
dc.language.isoenen_US
dc.relation.ispartof2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInfrared Target Detectionen_US
dc.subjectShallow Networksen_US
dc.subjectTwo Step Learningen_US
dc.titleInfrared Target Detection using Shallow CNNstr_TR
dc.titleInfrared Target Detection Using Shallow Cnnsen_US
dc.title.alternativeSığ Evrişimli Ağlar ile Kızıl Ötesi Hedef Tespitien_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: