Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Multiplication In Finite Fields

dc.authorid Ozbudak, Ferruh/0000-0002-1694-9283
dc.authorid Cenk, Murat/0000-0003-4941-8734
dc.authorscopusid 6504402955
dc.authorscopusid 6603589033
dc.authorwosid Ozbudak, Ferruh/Aaz-6893-2020
dc.authorwosid Cenk, Murat/Agu-7577-2022
dc.contributor.author Cenk, Murat
dc.contributor.author Cenk, Murat
dc.contributor.author Ozbudak, Ferruh
dc.contributor.authorID 6093 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-17T00:02:58Z
dc.date.available 2020-04-17T00:02:58Z
dc.date.issued 2010
dc.department Çankaya University en_US
dc.department-temp [Ozbudak, Ferruh] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey; [Ozbudak, Ferruh] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey; [Cenk, Murat] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey en_US
dc.description Ozbudak, Ferruh/0000-0002-1694-9283; Cenk, Murat/0000-0003-4941-8734 en_US
dc.description.abstract We present a method for multiplication in finite fields which gives multiplication algorithms with improved or best known bilinear complexities for certain finite fields. Our method generalizes some earlier methods and combines them with the recently introduced complexity notion (M) over cap (q)(l), which denotes the minimum number of multiplications needed in F-q in order to obtain the coefficients of the product of two arbitrary l-term polynomials modulo x(l) in F-q[x]. We study our method for the finite fields F(q)n, where 2 <= n <= 18 and q = 2, 3,4 and we improve or reach the currently best known bilinear complexities. We also give some applications in cryptography. (C) 2010 Published by Elsevier Inc. en_US
dc.description.publishedMonth 4
dc.description.sponsorship TUBITAK [TBAG-107T826] en_US
dc.description.sponsorship We would like to thank the anonymous reviewers for their insightful and useful comments that improved the paper. The authors were partially supported by TUBITAK under Grant No. TBAG-107T826. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Cenk, Murat; Ozbudak, Ferruh,"On multiplication in finite fields", Journal of Complexıty, Vol. 26, No. 2, pp. 172-186, (2010) en_US
dc.identifier.doi 10.1016/j.jco.2009.11.002
dc.identifier.endpage 186 en_US
dc.identifier.issn 0885-064X
dc.identifier.issn 1090-2708
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-77649339854
dc.identifier.scopusquality Q2
dc.identifier.startpage 172 en_US
dc.identifier.uri https://doi.org/10.1016/j.jco.2009.11.002
dc.identifier.volume 26 en_US
dc.identifier.wos WOS:000276662200004
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 27
dc.subject Finite Fields en_US
dc.subject Algebraic Function Fields en_US
dc.subject Bilinear Complexity en_US
dc.title On Multiplication In Finite Fields tr_TR
dc.title On Multiplication in Finite Fields en_US
dc.type Article en_US
dc.wos.citedbyCount 22
dspace.entity.type Publication
relation.isAuthorOfPublication c113b273-5f48-4f7d-9923-6d43468a5794
relation.isAuthorOfPublication.latestForDiscovery c113b273-5f48-4f7d-9923-6d43468a5794
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: