On Multiplication In Finite Fields
dc.authorid | Ozbudak, Ferruh/0000-0002-1694-9283 | |
dc.authorid | Cenk, Murat/0000-0003-4941-8734 | |
dc.authorscopusid | 6504402955 | |
dc.authorscopusid | 6603589033 | |
dc.authorwosid | Ozbudak, Ferruh/Aaz-6893-2020 | |
dc.authorwosid | Cenk, Murat/Agu-7577-2022 | |
dc.contributor.author | Cenk, Murat | |
dc.contributor.author | Cenk, Murat | |
dc.contributor.author | Ozbudak, Ferruh | |
dc.contributor.authorID | 6093 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-04-17T00:02:58Z | |
dc.date.available | 2020-04-17T00:02:58Z | |
dc.date.issued | 2010 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ozbudak, Ferruh] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey; [Ozbudak, Ferruh] Middle E Tech Univ, Inst Appl Math, TR-06531 Ankara, Turkey; [Cenk, Murat] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey | en_US |
dc.description | Ozbudak, Ferruh/0000-0002-1694-9283; Cenk, Murat/0000-0003-4941-8734 | en_US |
dc.description.abstract | We present a method for multiplication in finite fields which gives multiplication algorithms with improved or best known bilinear complexities for certain finite fields. Our method generalizes some earlier methods and combines them with the recently introduced complexity notion (M) over cap (q)(l), which denotes the minimum number of multiplications needed in F-q in order to obtain the coefficients of the product of two arbitrary l-term polynomials modulo x(l) in F-q[x]. We study our method for the finite fields F(q)n, where 2 <= n <= 18 and q = 2, 3,4 and we improve or reach the currently best known bilinear complexities. We also give some applications in cryptography. (C) 2010 Published by Elsevier Inc. | en_US |
dc.description.publishedMonth | 4 | |
dc.description.sponsorship | TUBITAK [TBAG-107T826] | en_US |
dc.description.sponsorship | We would like to thank the anonymous reviewers for their insightful and useful comments that improved the paper. The authors were partially supported by TUBITAK under Grant No. TBAG-107T826. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Cenk, Murat; Ozbudak, Ferruh,"On multiplication in finite fields", Journal of Complexıty, Vol. 26, No. 2, pp. 172-186, (2010) | en_US |
dc.identifier.doi | 10.1016/j.jco.2009.11.002 | |
dc.identifier.endpage | 186 | en_US |
dc.identifier.issn | 0885-064X | |
dc.identifier.issn | 1090-2708 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-77649339854 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 172 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jco.2009.11.002 | |
dc.identifier.volume | 26 | en_US |
dc.identifier.wos | WOS:000276662200004 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 27 | |
dc.subject | Finite Fields | en_US |
dc.subject | Algebraic Function Fields | en_US |
dc.subject | Bilinear Complexity | en_US |
dc.title | On Multiplication In Finite Fields | tr_TR |
dc.title | On Multiplication in Finite Fields | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 22 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c113b273-5f48-4f7d-9923-6d43468a5794 | |
relation.isAuthorOfPublication.latestForDiscovery | c113b273-5f48-4f7d-9923-6d43468a5794 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: