Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods

No Thumbnail Available

Date

2023

Authors

Güzey, Kaan
Aylı, Ülkü Ece
Koçak, Eyup
Aradağ, Selin

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

This article presents numerical and experimental studies on the aerodynamic and aeroacoustic characteristics of the NACA0012 profile with owl-inspired leading-edge serrations for aeroacoustic control. The leading-edge serrations under investigation are in a sinusoidal profile with two main design parameters of wavelength and amplitude. The noise-suppressing ability of sinusoidal serrations is a function of several parameters such as amplitude, wavelength, inflow speed, angle of attack, which are examined in this study. Amplitude (A) and wavelength (λ) of the serration are varied between 1.25 and 2.5, 20 < λ < 60, respectively. The corresponding Reynolds numbers are between 1 and 3 × 105. The angle of attack for each configuration is changed between 4° and 16°. Forty different configurations are tested. According to the results, owl-inspired leading-edge serrations can be used as aeroacoustic control add-ons in blade designs for wind turbines, aircraft, and fluid machinery. Results show that the narrower and sharper serrations have a better noise reduction effect. Overall sound pressure level (SPL) reduces up to 20% for the configuration with the largest amplitude and smaller wavelength. The results also showed that serration amplitude had a distinct effect on aeroacoustic performance, whereas wavelength is a function of amplitude. At the smaller angle of attack values, AOA < 8°, the lift and drag coefficients are almost the same for both clean and wavy profiles. On the other hand, typically for angle of attack values more than 12° (after stall), when the angle of attack is increased, serration adversely affects aerodynamic performance.

Description

Keywords

Airfoil, CFD, Experiment, LES, NACA0012, Serration, Wavy Leading Edge

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Güzey, Kaan;...et.al. (2023). "Investigation of aerodynamic and aeroacoustic behavior of bio-inspired airfoils with numerical and experimental methods", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,

WoS Q

Scopus Q

Source

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Volume

Issue

Start Page

End Page