Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing

Loading...
Thumbnail Image

Date

2022

Authors

Asjad, Muhammad Imran
Faridi, Waqas Ali
Jhangeer, Adil
Aleem, Maryam
Yusuf, Abdullahi
Alshomrani, Ali S.
Baleanu, Dumitru

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

The aim of study is to investigate the Hirota equation which has a significant role in applied sciences, like maritime, coastal engineering, ocean, and the main source of the environmental action due to energy transportation on floating anatomical structures. The classical Hirota model has transformed into a fractional Hirota governing equation by using the space-time fractional Riemann-Liouville, time fractional Atangana-Baleanu and space-time fractional β differential operators. The most generalized new extended direct algebraic technique is applied to obtain the solitonic patterns. The utilized scheme provided a generalized class of analytical solutions, which is presented by the trigonometric, rational, exponential and hyperbolic functions. The analytical solutions which cover almost all types of soliton are obtained with Riemann-Liouville, Atangana-Baleanu and β fractional operator. The influence of the fractional-order parameter on the acquired solitary wave solutions is graphically studied. The two and three-dimensional graphical comparison between Riemann-Liouville, Atangana-Baleanu and β-fractional derivatives for the solutions of the Hirota equation is displayed by considering suitable involved parametric values with the aid of Mathematica.

Description

Keywords

Fractional Derivatives, Multi-Wave Non-Linear Hirota Equation, New Extended Direct Algebraic Method, Soliton Solutions, Travelling Wave Transformation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Asjad, Muhammad Imran;...et.al. (2022). "Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing", AIMS Mathematics, Vol.7, No.5, pp.8290-8313.

WoS Q

Scopus Q

Source

AIMS Mathematics

Volume

7

Issue

5

Start Page

8290

End Page

8313