Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic

dc.authorid Rafiq, Muhammad/0000-0002-2165-3479
dc.authorid Abbas, Mujahid/0000-0001-5528-1207
dc.authorscopusid 57219216309
dc.authorscopusid 43660960400
dc.authorscopusid 55960372700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Abbas, Mujahid/Itu-7809-2023
dc.authorwosid Rafiq, Muhammad/Gnw-5095-2022
dc.contributor.author Ahmad, W.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Abbas, M.
dc.contributor.author Rafiq, M.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-06-16T08:03:58Z
dc.date.available 2022-06-16T08:03:58Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Ahmad, W.; Abbas, M.] Govt Coll Univ, Dept Math, Lahore, Pakistan; [Rafiq, M.] Univ Cent Punjab Lahore, Dept Math, Fac Sci, Lahore, Pakistan; [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Bucharest, Romania; [Baleanu, D.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description Rafiq, Muhammad/0000-0002-2165-3479; Abbas, Mujahid/0000-0001-5528-1207 en_US
dc.description.abstract In this manuscript, a new nonlinear model for the rapidly spreading Corona virus disease (COVID-19) is developed. We incorporate an additional class of vaccinated humans which ascertains the impact of vaccination strategy for susceptible humans. A complete mathematical analysis of this model is conducted to predict the dynamics of Corona virus in the population. The analysis proves the effectiveness of vaccination strategy employed and helps public health services to control or to reduce the burden of corona virus pandemic. We first prove the existence and uniqueness and then boundedness and positivity of solutions. Threshold parameter for the vaccination model is computed analytically. Stability of the proposed model at fixed points is investigated analytically with the help of threshold parameter to examine epidemiological relevance of the pandemic. We apply LaSalle's invariance principle from the theory of Lyapunov function to prove the global stability of both the equilibria. Two well known numerical techniques namely Runge-Kutta method of order 4 (RK4), and the Non-Standard Finite Difference (NSFD) method are employed to solve the system of ODE's and to validate our obtained theoretical results. For different coverage levels of voluntary vaccination, we explored a complete quantitative analysis of the model. To draw our conclusions, the effect of proposed vaccination on threshold parameter is studied numerically. It is claimed that Corona virus disease could be eradicated faster if a human community selfishly adopts mandatory vaccination measures at various coverage levels with proper awareness. Finally, we have executed the joint variability of all classes to understand the effect of vaccination strategy on a disease dynamics. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ahmad, W...et al. (2021). "Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic", Results in Physics, Vol. 31. en_US
dc.identifier.doi 10.1016/j.rinp.2021.104917
dc.identifier.issn 2211-3797
dc.identifier.pmid 34722138
dc.identifier.scopus 2-s2.0-85119428499
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.rinp.2021.104917
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:000722355600015
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 31
dc.subject Covid-19 en_US
dc.subject Steady States en_US
dc.subject Voluntary Vaccination en_US
dc.subject Uniqueness en_US
dc.subject Stability Analysis en_US
dc.subject Covariance en_US
dc.title Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic tr_TR
dc.title Mathematical Analysis for the Effect of Voluntary Vaccination on the Propagation of Corona Virus Pandemic en_US
dc.type Article en_US
dc.wos.citedbyCount 29
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: