Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A New Stochastic Computing Paradigm for Nonlinear Painleve II Systems in Applications of Random Matrix Theory

dc.contributor.authorRaja, Muhammad Asif Zahoor
dc.contributor.authorShah, Zahoor
dc.contributor.authorManzar, Muhammad Anwaar
dc.contributor.authorAhmad, Iftikhar
dc.contributor.authorAwais, Muhammad
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-03-26T13:46:36Z
dc.date.available2020-03-26T13:46:36Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe aim of the present work is to investigate the stochastic numerical solutions of nonlinear Painleve II systems arising from studies of two-dimensional Yang-Mills theory, growth processes through fluctuation formulas in statistical physics, soft-edge random matrix distributions using the strength of bioinspired heuristics through artificial neural networks (ANNs), genetic algorithm (GA)-based evolutionary computations and interior-point techniques (IPTs). A new mathematical modelling of the system is formulated through ANNs by defining an error function that exactly satisfies the initial conditions. The weights of ANN models optimized through a memetic computing approach that is based on a global search with GAs, and IPTs are used for an efficient local search. The designed scheme is substantiated through comparative analysis with a fully explicit Range-Kutta numerical procedure on nonlinear Painleve II systems by taking different magnitudes of forcing factors. The accuracy and convergence of the proposed scheme are validated through statistics performed on large numbers of simulations.en_US
dc.description.publishedMonth7
dc.identifier.citationRaja, Muhammad Asif Zahoor...et al. (2018). "A new stochastic computing paradigm for nonlinear Painleve II systems in applications of random matrix theory", European Physical Journal Plus, Vol. 133, No. 7.en_US
dc.identifier.doi10.1140/epjp/i2018-12080-4
dc.identifier.issn2190-5444
dc.identifier.issue7en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2756
dc.identifier.volume133en_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofEuropean Physical Journal Plusen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtifıcial Neural-Networken_US
dc.subjectInterior-Point Algorithmen_US
dc.subjectBoundary-Value-Problemsen_US
dc.subjectDifferential-Equationsen_US
dc.subjectComputational Intelligenceen_US
dc.subjectNumerical Treatmenten_US
dc.subjectDynamics; Designen_US
dc.subjectAnalyzeen_US
dc.subjectHeuristicsen_US
dc.titleA New Stochastic Computing Paradigm for Nonlinear Painleve II Systems in Applications of Random Matrix Theorytr_TR
dc.titleA New Stochastic Computing Paradigm for Nonlinear Painleve Ii Systems in Applications of Random Matrix Theoryen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: